
Dynamical system approach to explainability
in recurrent neural networks

Alexis Dubreuil

Institut de la Vision, Sorbonne Universités, INSERM, CNRS, F-75012 Paris, France

alexis.dubreuil@gmail.com

Résumé
Les technologies basées sur l’IA, notamment les machines
neuronales, sont souvent qualifiées de boîtes noires, limi-
tant leur déploiement dans toute une gamme d’applica-
tions. Ici nous présentons des méthodologies qui permettent
d’ouvrir ces boîtes noires. Elles se basent sur le formalisme
de la théorie des systèmes dynamiques qui a été initialement
mis à profit pour comprendre les calculs dans les réseaux
de neurones biologiques. Nous décrivons des travaux qui
appliquent ces méthodes pour la modélisation en neuros-
ciences et pour le traitement automatique du langage. Ceci
nous permet, à partir d’exemples concrets, d’illustrer com-
ment l’explicabilité peut contribuer aux développements de
l’IA.

Mots-clés
explicabilité, apprentissage profond, systèmes dynamiques,
neurosciences, Traitement Automatique du Langage

Abstract
AI based technologies and neural machines in particular
are often referred to as black-boxes, which limits their de-
ployment in various fields. Here we present methodologies
to open these black-boxes. They rely on the formalism of dy-
namical system theory which has initially been leveraged to
understand neural computations in brain circuits. We des-
cribe works that applied these methodologies for modeling
in neuroscience and for natural language processing, al-
lowing us to discuss concrete examples demonstrating the
potential of explainability in fostering further developments
in AI.

Keywords
explainability, deep-learning, dynamical systems, neuros-
cience, Natural Language Processing

1 Introduction
AI based technologies are developing at a fast pace, in parti-
cular thanks to recent progress in harnessing neural network
based machines. Further expanding the scope of applica-
tions requires the functioning of AI systems to be explai-
nable in a human understandable format so that they can be
trusted, for instance in safety-critical applications such as
self-driving cars. While many levels of explainability can

be defined based on the deployment context of a technology
[4], a necessary step for neural network based machines
is to get access to their "inner workings" [26]. However,
the functioning of neural networks is particularly difficult
to grasp as they typically are high-dimensional non-linear
systems with thousands or millions of parameters tuned by
a learning algorithm. Here we review efforts that have been
undertaken over the last ten years to reverse-engineer these
neural machines. The reviewed works focused on recur-
rent neural networks (RNN), a generic neural architecture,
known to be particularly well suited to deal with time va-
rying inputs and outputs such as those in natural language
processing tasks (see e.g. [35]). In sections 2 and 3, we in-
troduce the theoretical concepts, based on dynamical sys-
tem theory 1, that have been developed since the 80’s to
understand neural computations. In section 4 we present
methodological tools that leverage this conceptual frame-
work to reverse-engineer RNN. In section 5 we illustrate
how explainability enables AI approaches to foster inter-
actions between theoretical and experimental neuroscience.
In section 6 we show how these methodologies have been
used to understand how RNN solve natural language pro-
cessing tasks. Finally in discussion we outline the poten-
tial of these methodologies for scientific applications of AI,
practical applications of AI and theoretical investigations of
neural computations.

2 RNN as dynamical systems
Recurrent neural networks are fully connected networks,
i.e. each neuron a priori receives inputs from all the other
neurons in the network (Fig. 1a). Given that they typically
receive inputs that extend over time, they are often referred
to as deep-in-time neural networks as illustrated in Fig. 1b.
A typical way of formalizing the time evolution of the state
of a RNN composed of N neurons, ~xt ∈ RN , is through

~xt+1 = WrecΦ
(
~xt
)

+Win~u
t (1)

where Wrec ∈ RN×N is the recurrent connectivity matrix,
Win ∈ RN×Nin connects input neurons to recurrent neu-
rons, ~ut ∈ RNin models the activity of input neurons at
time t, and Φ(.) is a non-linear function, typically the hy-
perbolic tangent or the rectified-linear function. The results

1. see [31] for a friendly introduction to dynamical system theory

... ...

... ...

a

b

c

Figure 1. a. Schematic of a recurrent neural network (RNN).
b.Typical representation of a RNN seen as a deep-in-time
neural network. c. The activity of a RNN while it solves
a task and computes on its inputs can be represented as a
trajectory in the state-space defined by the activity of each
individual units. Red crosses represent stable activity states
that could be used to store computationally relevant va-
riables. Transitions between such states would then be trig-
gered by inputs.

of computations in the RNN are read out by readout neu-
rons with activity ~zt ∈ RNout :

~zt = WoutΦ(~xt) (2)

where Wout ∈ RNout×N connects recurrent neurons to the
readout neurons.
These equations describe so called Vanilla RNN or Elman
networks. Note that sometimes the time evolution is defined
as ~xt+1 = Φ (Wrec~x

t +Win~u
t). These two formulations

can be shown to be equivalent up to a change of coordinates
[7]. With the addition of a leak term to eq. (1), the time
evolution of the network can be expressed in continuous
time as

τ~̇x(t) = −~x(t) +W recΦ(~x(t)) +W in~u(t) (3)
~z(t) = W outΦ(~x(t)) (4)

This is the standard equation for the dynamics of a rate
model used for the modeling of biological neural networks
[10] and whose behavior has been studied extensively
as we illustrate below. RNN are thus high-dimensional
(N � 1) non-linear dynamical systems whose activity
~x(t) can be conveniently thought of as a trajectory in a
state-space of dimension N as illustrated in Fig. 1c. When
the network is performing a task, these trajectories will
reflect the computations performed by the RNN.

3 Recurrent computations on inputs
Neural trajectories are the results of two factors, the input
drive W in~u(t) and the recurrent activity W recΦ(~x(t)). In
biological and artificial neural networks, neural trajectories
are typically attracted towards low-dimensional sub-spaces
of dimension D � N [9; 2], such that recurrent activity

can typically be described by D coordinates or latent va-
riables representing the overlap between the neural activity
~x(t) and particular directions in state-space. The connecti-
vity structure Wrec determines the shape of the sub-spaces
on which these latent variables evolve. In the next two sub-
sections we present classical examples illustrating these
features and explicit how latent variables can be related to
computations. In the last sub-section we present a class of
RNN for which the high-dimensional dynamics eq. (3) can
be reduced to a D-dimensional dynamical system governing
the time evolution of latent variables, making this class of
networks particularly amenable to reverse-engineering.

3.1 Point attractors in Hopfield networks
As a first example, we consider Hopfield networks that have
been proposed as models of associative memory [19; 20].
A set of P memories ~ξµ ∈ {−1,+1}N , µ = 1, ..., P are
stored in a RNN by choosing the connectivity matrix

Wrec = ~ξ1~ξ1T + ...+ ~ξP ~ξP T (5)

where T denotes the transpose operation. If the number of
memories P is not too large, neural trajectories evolve to-
wards one of P fixed-points (the dynamical landscape as-
sociated to eq. (3) is said to contain P attractors). The dy-
namics of the network during the retrieval of a memory
µ can be effectively reduced to a one-dimensional system
over a latent variable representing the overlap between the
network state and the memory pattern κµ = 〈Φ(~x(t)), ~ξµ〉
[11]

κ̇µ = −κµ + F (κµ) (6)

where F (.) is a sigmoid-shaped function. When the RNN is
cued with an input that triggers neural activity in the direc-
tion ~ξµ, neural activity sets up in a fixed point characterized
by κµ ' 1, κν 6=µ ' 0 and the memory µ is said to be
retrieved.

3.2 Continuous attractors
In the previous example, the recurrent dynamics is attracted
towards a set of P discrete points randomly spread throu-
ghout state-space. Activity of biological and artificial neu-
ral networks can also evolve on continuous sub-spaces such
as line attractors (D=1) [29; 21] or plane attractors (D=2)
[36; 2]. In [29], a line attractor (illustrated in Fig. 2b) is im-
printed in the network’s dynamics by choosing a rank one
recurrent matrix with a carefully chosen singular value

Wrec = ~m~nT (7)

that generates activity WrecΦ(~x(t)) along the direction ~m.
The N-dimensional dynamics of such a network can thus
be reduced to the one-dimensional dynamics of a latent va-
riable κ. Given the particular structure of the connectivity
matrix, inputs that trigger neural activity along the direc-
tion ~n will be kept in network activity for a time that can be
much longer than the single neuron time constant τ , while
inputs triggering neural activity along directions orthogonal
to ~n will be forgotten from network activity on a time-scale

a

b c

Figure 2. a. Schematic projection of the state space for a
Hopfield network storing three memories (taken from [18]).
b. Schematic representation of a line attractor. The activity
of the network can be thought of as a ball evolving on the
half-pipe representing the energy function of the system.
The location of this ball on the line composed of margi-
nally stable fixed-points encodes a scalar value (taken from
[29]). c. Dynamical landscapes of a 2-D reduced system
(see eq. (10)) obtained from a trained rank-2 RNN compo-
sed ofN = 1024 neurons. Filled white circles denote stable
fixed-points, empty circles denote unstable fixed-points, co-
lor coded is the absolute speed at which latent variable tra-
jectories evolve and the white arrows depict the directiona-
lity of the latent variables flow. Inputs to the network can
modify the effective couplings between latent variables and
thus reconfigure their dynamical landscape. (taken from
[13])

τ (cf Fig. 2B). Such latent variables that encode analog va-
lues and maintain them on long-time scales can store va-
rious computationally relevant information such as the po-
sition of an animal [36] or the sentiment associated with a
text in a language processing network [21] (see section 6).

3.3 Reduced dynamics over latent variables
The above examples illustrate how latent variables can
be used to relate patterns of neural activity to their role
in computations. As shown by recent theoretical works
[24; 12; 5; 13], the dynamics of low-rank RNN, whose
connectivity matrix can be written as

Wrec =

D∑
k=1

~mk~n
T
k (8)

can be analytically reduced to a dynamics over D latent
variables (D � N). Using tools from statistical physics,
the neural activity can be expressed as [24]

~x(t) =

D∑
k=1

κk(t)~mk +Win
~v(t) (9)

where the latent variables are projections of neural activity
onto the connectivity vectors ~mk (κk(t) = 〈~x(t), ~mk〉) and

~v(t) corresponds to inputs ~u(t) low-pass filtered with a time
constant τ . The full N-dimensional dynamics eq. (3) is then
fully characterized by a D-dimensional dynamical system
[12], that can be concisely expressed as

τ κ̇j(t) = −κj(t) +

D∑
k=1

σ̃recjk κk(t) +

Nin∑
k=1

σ̃injkvk(t) (10)

where the effective couplings σ̃ are non-linear functions of
the κk’s and inputs ~u (see [12; 13] for explicit expressions
of the σ̃’s). In particular an input uk can have two qualita-
tively different effects, it can either be integrated by a la-
tent variable κj through σ̃injkvk(t) or it can modulate the
effective couplings between latent variables and inputs by
controlling the value of one of the σ̃. In Fig. 2c we show
two dynamical landscapes associated with a single system
of two-latent variables, for different applied inputs. At the
bottom, the dynamical landscape is composed of two stable
fixed-points (white dots) towards which latent variables are
attracted. As an input is applied onto the RNN, the effective
dynamics of the latent variables is reconfigured and they
will oscillate on a limit cycle. Trained RNN make use of
this principle to solve tasks [12; 13].
As we will see below, low-rank networks, whose dynamics
can be reduced in a principled manner, are particularly well
suited to provide access to their inner workings.

4 Reverse-engineering methodolo-
gies for RNN

4.1 Characterizing the dynamical landscape
by linearization around fixed-points

According to the principles exposed in section 2, unders-
tanding computations in a RNN requires to characterize
the dynamical landscape associated with the set of trained
parameters {Wrec,Win,Wout}. Towards such a charac-
terization, Sussillo and Barak [32] developed a numerical
procedure to find the fixed-points (or slow points, ~̇x(t) ' 0)
of a trained RNN (Fig. 3a). Then by studying the linearized
dynamics of trained RNNs around these slow points they
could reveal important computational properties of these
systems. For instance by doing so on a RNN trained
on a 3-bit flip-flop task (Fig. 3b), they could identify
multiple stable fixed-points that enable the system to
remain in various states important for solving the task
(black crosses in Fig. 3b). They also found saddle-points
(fixed-points with some unstable directions, green crosses)
that allows inputs to the network to induce transitions
between stable fixed-points. By visualizing the locations
of these fixed-points and the neural trajectories (blue and
red thin lines) in a relevant three dimensional sub-space
(identified by principal component analysis on network
trajectories concatenated across multiple task trials), they
could provide a concise description of how the network
solves the task. Various authors have used this approach
to reverse-engineer RNN [8; 21] and a tensorflow toolbox
is available to find fixed-points and characterize the linear

-0.5 10.50

0.5

0

Network’s structure
after training

Reduced connectivity
parametrisation

− 0.01

0.00

0.01

−1

0

1
Theory informed

complexity reduction

a b

c

Figure 3. a. Numerical procedure to characterize the dy-
namical landscape of RNN. For a generic dynamical sys-
tem defined by a function F(.), the first step is to locate
the fixed-points (or slow points) of the trained RNN, then
to characterize the linearized dynamics around these fixed
points, which can be done by analyzing the eigenspectrum
of the stability matrix associated to each fixed point (points
beyond the dashed lines are associated with state-space di-
rections that are unstable). b. Visualization of neural trajec-
tories (blue and red thin lines) for a network that solves a
3-bit flip-flop task : a network is excited by three input neu-
rons whose activity takes non-zero values at random time
points, three output neurons are trained to represent the sign
of the last activation of the inputs neurons (taken from [32]).
Black crosses denote the location of stable fixed-points in
which the network settles in between inputs. Possible input-
triggered transitions between network states are allowed by
the presence of saddle points (green crosses) whose direc-
tion of instability connects (red thick lines) stable fixed-
points. c. Illustration of the analytical procedure to reduce
the dimensionality of trained RNN. After training one ob-
tains a N × N connectivity matrix, the complexity of this
matrix is reduced by computing averaged quantities that de-
termine RNN dynamics, e.g. the overlaps between the re-
current connectivity vectors ~m and ~n.

dynamics around these fixed-points [15].

4.2 Reducing the dimensionality of trained
RNN

Here we present two methodologies that have been propo-
sed to reduce the dimensionality of trained RNN and to des-
cribe their computations in a simple language.
In [27], the authors first dissect a trained RNN using an ap-
proach similar to what has been described in the above sec-
tion and noticed that recurrent activity mainly lies in a two-
dimensional sub-space. Then, inspired by the knowledge
distillation approach [6], they trained a two-units RNN to
reproduce the projected two-dimensional activity of the ori-
ginal network and obtained a simpler two-dimensional dy-
namical system that performs the task equally well than the

original network. This allowed them to synthesize the be-
havior of the network by describing the dynamics of only
two variables.
In [12], the authors trained RNN with a connectivity matrix
of fixed rank D as in eq. (8). To do so, they reparametri-
zed learning so that a loss function is minimized over the
parameters Θ = {~mk, ~nk,Win,Wout}k=1,...,D instead of
{Wrec,Win,Wout} as is usually done. In the training pro-
cedure, the rank D was treated as an hyper-parameter, and
for each task they identified the minimal rank that allows
the task to be solved. They then used the theoretical in-
sights presented in section 3.3 to concisely summarize the
dynamics of their RNN with a dynamical system of mini-
mal dimensionality. This analytical characterization of the
reduced system allows to relate properties of neural trajec-
tories to the connectivity structure through the mathema-
tical expression of the functional couplings σ̃, which de-
pends on the statistical structure of the connectivity vectors
Θ (see Fig. 3c). This detailed understanding has allowed,
from RNN trained on simple tasks, to engineer similarly
functional networks without appealing to a learning algo-
rithm [12; 13]. Thus this methodology, in which solutions
to a task are looked for in the restricted space of minimal
rank RNN, appears to provide a solution to the reverse-
engineering problem that is satisfactory according to the
criterion set by Richard Feynman’s quote : "What I can not
create, I do not understand". An application of this method
is described in section 5.1.

5 RNN implementing elementary
cognitive processes and brain cir-
cuits modeling

Here we review recent works that leveraged these reverse-
engineering methodologies in the context of neuroscience
modeling (see e.g. [23; 34; 8; 37; 12; 13; 17; 14]). We
show how this has allowed to understand the network im-
plementation of elementary cognitive processes. In the first
subsection we review recent works that extracted network
mechanisms for motor control and context-dependent com-
putations. These works have been performed in parallel to
experimental neuroscience studies that involve designing
minimal behavioral tasks to isolate core cognitive pro-
cesses such as working memory, decision making, motor-
control or context-dependent computations (see Fig. 4a for
an example). In the second subsection we outline how ac-
cessing explainable RNN allows to make interpretations
and predictions regarding experimental measurements in
neuroscience.

5.1 Network implementation of elementary
cognitive processes

Motor control. Here we describe the reverse-engineering
of a RNN trained on a task inspired by a study of motor
control where monkeys slide their fingers on a screen to
navigate from a starting point to a target point, with various
configurations of obstacles in between [34]. Applying the

t

t
+1
-1

0 0.4 1.20.8
time(s)

10

0

-10

left/green
button

right/red
button

Dots move left or right ?
More green or red dots ?

Visual stimulus
on screen:

Answer
buttons:

context 1 context 2

 0

a b

c d

Figure 4. a. Schematic of a behavioral task used in neu-
roscience experiments. On a screen, a subject watches dots
that are colored either green or red and that move erratically
(black arrows represent velocity vectors of the dots, which
are redrawn randomly at each time step). Based on some
contextual cues, the subject’s task is to report, by pressing
one of two buttons, whether the averaged movement of the
dots is to the left or to the right (context 1), or whether there
are more green or red dots (context 2). b. Minimal modeling
of this behavioral task for a RNN : two sensory inputs u1(t)
and u2(t) fluctuate over time, the readout neuron should re-
spond +1 (resp.−1) if the relevant sensory input has a po-
sitive (resp. negative) average. The relevant sensory input is
determined by the activities of the two contextual neurons.
c. Dynamics of the latent variable characterizing recurrent
activity for two task trials. The same constant sensory in-
puts are shown for the two trials, but the contextual input
changes. The latent variable integrates the relevant sensory
input. d. In the reduced description of the RNN, the effec-
tive interactions coupling the latent variable with the two
sensory inputs are modulated by context.

methodology presented in section 4.1 they performed the
linear-stability analysis of the single fixed point found in
the RNN. While most of the eigenvalues of the stability
matrix were associated to decaying modes of activity
(eigenvalues with negative real parts), three pairs of
eigenvalues (complex conjugate pairs of purely imaginary
numbers) were associated with three typical oscillatory
modes observed in the neural trajectories for both trained
RNN and experimental data.

Context-dependent computations. In [12] the authors
trained low-rank RNN to implement the context-dependent
task described in Fig. 4a,b whose implementation relies
on a form of if... then... else... statement. They performed
reverse-engineering using the methodology described in
section 4.2. They found that a rank one network was suffi-
cient to perform this task and could summarize the recurrent
computation by the one dimensional non-linear dynamical
system

κ̇ = −κ+ σ̃κκ+ σ̃W 1
in
u1(t) + σ̃W 2

in
u2(t) (11)

Within this formulation, the behavior of the network could
be explained in simple terms : the contextual inputs uctx1
and uctx2 control the effective couplings between the latent
variable and the sensory inputs u1(t) and u2(t) (Fig. 4d),
allowing the latent variable to compute the temporal ave-
rage 〈u1(t)〉t if uctx1 = 1 &uctx2 = 0 and 〈u2(t)〉t if
uctx1 = 0 &uctx2 = 1 (Fig. 4c). This explanation is equi-
valent, although more concise, to the one we could give by
running the methodology of section 4.1 : recurrent activity
evolves on a line attractor to which is associated an input
selection vector whose direction is tuned by contextual in-
puts to integrate the relevant sensory inputs [23; 22]. Other
tasks involving context-dependent computations have been
shown to rely on such context-dependent dynamical land-
scape for the latent variables [13].

5.2 Explainability for neuroscience experi-
ments

The insights obtained by reverse-engineering these RNN
have turned out to be quite useful for biological network
modeling. A typical approach goes as follows : i) the acti-
vity of part of a brain circuit has been characterized in ex-
periments, ii) a modeler explores various training settings
(e.g. plays with regularization techniques, [34]) to obtain
RNN whose neural activity matches the biological one, iii)
the RNN is reverse-engineered. This leads to two types of
contributions. First, by synthesizing the available data in a
mechanistic framework, it allows to propose a functional
role to observed properties of brain activity. For instance
in [34], by using various learning procedures they obtai-
ned different RNN implementations of the task and could
show that the simplest RNN (in terms of their dynamical
properties) better matched the data. They could moreover
show that the simplest RNN were more robust to pertur-
bations such as neuron erasure, suggesting that features of
neural activity observed in motor cortex correspond to a ro-
bust implementation of motor control. Second, it allows to
make predictions for parts of the circuit, or properties of
the circuit, that have not been characterized experimentally.
For instance in [13] the authors propose predictions regar-
ding the structure of neural selectivity (how the activity of
neurons relate to the task variables) to be observed in ani-
mals performing specific tasks.

6 Reverse-engineering RNN perfor-
ming language processing tasks

These methods have been used to reverse-engineer net-
works trained on language processing tasks. In [21] the
authors trained various RNN architectures (Vanilla RNN,
GRU, LSTM) to perform a binary sentiment analysis tasks
on the Yelp review, the IMDB movie review and the Stan-
ford Sentiment Treebank datasets. Each trial consists of a
sentence where each word is mediated through an input
vector to the RNN, at the end of each sentence a readout
neuron is asked to provide a binary value, +1 if the review
is positive, −1 if the review is negative. Analyzing trai-
ned networks they found that the learning algorithm builds

networks whose activity is low-dimensional (a PCA ana-
lysis shows that 90% of the RNN hidden state variance is
captured with only two principal components). By visuali-
zing neural trajectories produced throughout the presenta-
tion of a sentence in a two-dimensional space, they noticed
that neural activity mainly evolves along a single dimen-
sion aligned with the network’s readout vector Wout, with
sentences associated with positive reviews driving activity
in one direction and negative reviews driving activity in the
other direction (see Fig. 5a). The amplitude of an activity
shift along this direction was dependent on the current word
being presented, with neutral words (e.g. "the", "car") eli-
citing no movement along this dimension and highly ne-
gative (e.g. "bad", "horrible") or positive (e.g. "amazing",
"great") words eliciting large movements. By finding the
fixed points of this system and analysing their linear sta-
bility (section 4.1), they could show that these trajectories
are supported by a line attractor (section 3.2). They reali-
zed that a RNN implementing only a line attractor would
perform as well as a bag-of-words model, although their
trained RNN showed better performance. In a subsequent
study [22], still using the same reverse-engineering tech-
niques, they could reveal that trained RNN performed better
than bag-of-words because they are able to process words
in a context-dependent manner. They focused on the effect
of modifier words (e.g. "not") that reverse the meaning of
a subsequently appearing word such as in "not bad" ver-
sus "bad". They found that modifier words drive activity in
a direction orthogonal to the line attractor towards points
in state-space where the response to subsequent inputs is
reversed (Fig. 5b), revealing a similar mechanism than the
one described in section 5.1. Remarkably, using the insights
gained by their reverse-engineering studies they could ex-
tend bag-of-words models to include the effect of such mo-
difier words and reach performance similar to the one of the
more complex RNN initially used.
In another recent study [2] the authors performed the same
type of reverse-engineering on other NLP tasks (docu-
ment classification, review star prediction, emotion tag-
ging). With learning leading to low-dimensional activity
in the RNN, they could similarly describe how the proper-
ties of the networks’ dynamical landscapes govern the RNN
computations.

7 Discussion
We have mainly reviewed two methodologies that have
been developed to characterize the dynamical landscape of
RNN. We have first introduced a numerical procedure that
allows to find the fixed-points of trained RNN and to cha-
racterize the linearized dynamics of networks around these
fixed-points (section 4.1). We have shown on examples how
stable fixed-points are associated with internal network
states that are important for the storage of information.
We have also shown how training algorithms can build
other types of dynamical structures to support other aspects
of computation, such as saddle-points organizing the set
of possible input-dependent transitions between internal

a b

Figure 5. a. Two neural trajectories in a 2-D cut of the
state-space of RNN performing a sentiment analysis task.
The green trajectory corresponds to the activity of the RNN
while it is presented with a positive review : positive words
push neural activity towards the right. The red trajectory
corresponds to a negative review. (taken from [21]). b. Mo-
difier words push neural activity in directions that are or-
thogonal to the line attractor direction. Neural activity then
reaches a point in state-space where the dynamical land-
scape is such that subsequent inputs generates a shift in
state-space in a direction opposite to the one that would oc-
cur in the absence of a modifier word (taken from [22]).

states (Fig 3b).
We have then introduced an analytical approach that allows
to reduce RNN to low-dimensional dynamical systems
of latent variables corresponding to collective modes of
activity of the full RNN (section 4.2). These reduced
dynamical systems are parametrized by averaged quan-
tities, or summary statistics, of the trained connectivity
matrices (Fig. 3c). This allows to describe the relationship
between properties of neural trajectories and the learnt
structure of RNN, and thus to provide satisfactory solutions
to reverse-engineering problems. This approach relies
on reparametrizing the connectivity matrix by a rank
D connectivity matrix and could appear rather limited.
Nevertheless, it has been shown that training full rank RNN
on simple tasks leads to low-dimensional implementation
of the tasks that can be captured by low-rank RNNs [28],
and that rank-D RNN can in principle implement any
D-dimensional dynamical system [5]. In section 5.1 we
have presented how this methodology has been leveraged
to show how RNN implement context-dependent computa-
tions, with contexts re-configuring the effective dynamical
system that governs the time evolution of latent variables.

These methodologies grant access to the inner wor-
kings of trained networks and this level of explainability
appears well suited for i) applications of AI to the sciences,
ii) practical applications of AI as well as for iii) theoretical
investigations of neural computations.
These methodologies have been developed within the
context of biological neural network modeling. As such
they have allowed to tighten the link between experimental
neuroscience and neural network theory by ascribing a
functional role to various correlative experimental obser-
vations, and by making predictions for future experiments
(section 5.2). Given the expanding use of deep-networks,

and RNN in particular, in various fields of science, like
population genetics [1] or linguistic [25], this approach is
expected to be useful to reveal the network mechanisms at
stake in various natural phenomena.
Reverse-engineering of RNN trained on practical tasks
have also been performed, confirming that the theoretical
concepts presented in section 3 are also appropriate within
this context. We have presented works focused on natural
language processing tasks (section 6). By leveraging the
insights provided by reverse-engineering RNN, researchers
could a posteriori build minimal extensions of bag-of-
words models that perform as well as more complicated
RNN on a sentiment analysis task. This is reminiscent of
the knowledge distillation approach [6] that has been pro-
posed to reduce the complexity of trained machine learning
models and make their commercial implementations more
efficient. The insights gained from reverse-engineering
studies can also be used to design better training algorithms
by proposing new forms of regularization [17].
Finally the description of neural computations in terms
of collective or latent variables, that can be thought of
as encoding symbols (see e.g. section 3.1), might allow
to formulate neural computations in a language closer
to standard notions of computations. For instance, from
the dynamical system point of view, the RNN trained on
the 3-bit flip-flop task can be interpreted as a finite-state
automaton, with attractors corresponding to machine states
and saddle-points programming possible input-triggered
transitions between states (see Fig. 3b). It would be
interesting to describe what other dynamical features
underlie the computing power of neural networks [30]
and their ability to implement pushdown automata or
Turing machines. Moreover, based on the comparison
between latent variables and symbols, the dynamical
system approach to neural computations might turn out
relevant, as an exploratory tool, for the development of
hybrid AI architectures, which combine the respective
strengths of symbolic AI and artificial neural networks, and
that have been identified as promising for the development
of explainable IA architectures [4].

Acknowledgment
I would like to thank Michele Sebag, Thomas Bonald and
Jean-Louis Dessalles for useful discussions about explaina-
bility.

Références
[1] Adrion, J. R., Galloway, J. G. Kern, A. D. Predicting

the Landscape of Recombination Using Deep Lear-
ning. Molecular Biology and Evolution 37, 1790–1808
(2020).

[2] Aitken, K. et al. The geometry of integration in text
classification RNNs. Proceedings of the International
Conference on Learning Representations (2021).

[3] Barak, O. Recurrent neural networks as versatile tools

of neuroscience research. Current Opinion in Neuro-
biology 46, 1–6 (2017).

[4] Beaudouin, V., Bloch, I., Bounie, D., Clémençon, S.,
D’Alché-Buc, F., Eagan, J., Maxwell, W., Mozharovs-
kyi, P., Parekh, J. Flexible and Context-Specific AI Ex-
plainability : A Multidisciplinary Approach (2020)

[5] Beiran, M., Dubreuil, A., Valente, A., Mastrogiu-
seppe, F. Ostojic, S. Shaping dynamics with mul-
tiple populations in low-rank recurrent networks.
arXiv :2007.02062 [q-bio] (2020).

[6] Bucila, C., Caruana, R., Niculescu-Mizil, A. Model
Compression. Proceeding of the 12th ACM SIGKDD
international conference on Knowledge discovery and
data mining (2006).

[7] Ceni, A., Ashwin, P. Livi, L. Interpreting Recurrent
Neural Networks Behaviour via Excitable Network At-
tractors. Cogn Comput 12, 330–356 (2020).

[8] Chaisangmongkon, W., Swaminathan, S. K., Freed-
man, D. J. Wang, X.-J. Computing by Robust Tran-
sience : How the Fronto-Parietal Network Performs Se-
quential, Category-Based Decisions. Neuron 93, 1504-
1517.e4 (2017).

[9] Cunningham, J. P. Yu, B. M. Dimensionality reduction
for large-scale neural recordings. Nature Neuroscience
17, 1500–1509 (2014).

[10] Dayan, P., Abbott, L.F. Theoretical neuroscience :
computational and mathematical modeling of neural
systems. Computational Neuroscience Series (2001).

[11] Derrida, B., Gardner, E. Zippelius, A. An exactly sol-
vable asymmetric neural network model. EPL (Euro-
physics Letters) 4, 167 (1987).

[12] Dubreuil, A., Valente, A., Mastrogiuseppe, F. and Os-
tojic, S. Disentangling the roles of dimensionality and
cell classes in neural computations. NeurIPS Neuro-AI
Workshop (2019).

[13] Dubreuil, A., Valente, A., Beiran, M., Mastrogiu-
seppe, F. and Ostojic, S. Complementary roles of di-
mensionality and population structure in neural com-
putations. bioRxiv (2020).

[14] Fanthomme, A., Monasson, R. Low-Dimensional ma-
nifolds support multiplexed integrations in recurrent
neural networks. Neural Computation (2021).

[15] Golub, M. and Sussillo, D. FixedPointFinder :
A Tensorflow toolbox for identifying and charac-
terizing fixed points in recurrent neural networks.
Journal of Open Source Software, 3(31), 1003,
https ://doi.org/10.21105/joss.01003 (2018).

[16] Graves, A. et al. Hybrid computing using a neural
network with dynamic external memory. Nature 538,
471–476 (2016).

[17] Haviv, D., Rivkind, A. Barak, O. Understanding and
controlling memory in recurrent neural networks. Pro-
ceedings of the 36th International Conference on Ma-
chine Learning (2019).

[18] Hertz, J., Krogh, A., Palmer, R. G. Introduction to the
theory of neural computation. CRC Press (1991).

[19] Hopfield, J. J. Neural Networks and Physical Sys-
tems with Emergent Collective Computational Abili-
ties. Proceedings of the National Academy of Sciences
79, 2554–2558 (1982).

[20] Hopfield, J. J. Neurons with graded response have
collective computational properties like those of two-
state neurons. Proceedings of the National Academy of
Sciences 81, 3088–3092 (1984).

[21] Maheswaranathan, N., Williams, A., Golub, M., Gan-
guli, S. and Sussillo, D. Reverse engineering recurrent
networks for sentiment classification reveals line attrac-
tor dynamics. Advances in neural information proces-
sing systems (2020).

[22] Maheswaranathan, N. Sussillo, D. How recurrent net-
works implement contextual processing in sentiment
analysis. Proceedings of the 37th International Confe-
rence on Machine Learning, PMLR 119 :6608-6619,
(2020).

[23] Mante, V., Sussillo, D., Shenoy, K. V. and Newsome,
W. T. Context-dependent computation by recurrent dy-
namics in prefrontal cortex. Nature 503, 78–84 (2013).

[24] Mastrogiuseppe, F. Ostojic, S. Linking Connec-
tivity, Dynamics, and Computations in Low-
Rank Recurrent Neural Networks. Neuron,
doi :10.1016/j.neuron.2018.07.003, (2018).

[25] Lakretz, Y. et al. The emergence of number and syntax
units in LSTM language models. NAACL (2019).

[26] Peterson, G. E. Foundation for neural network veri-
fication and validation. In Science of Artificial Neural
Networks II, volume 1966, pages 196–207. Internatio-
nal Society for Optics and Photonics (1993).

[27] Schaeffer, R., Khona, M., Meshulam, L., Fiete Rani,
I. Reverse-engineering recurrent neural network solu-
tions to a hierarchical inference task for mice. NeurIPS
(2020).

[28] Schuessler, F., Mastrogiuseppe, F., Dubreuil, A., Os-
tojic, S. Barak, O. The interplay between randomness
and structure during learning in RNNs. Advances in
neural information processing system (2020).

[29] Seung, H. S. How the brain keeps the eyes still. Pro-
ceedings of the National Academy of Sciences 93,
13339–13344 (1996).

[30] Siegelmann, H.T. and Sontag, E.D. On the compu-
tational power of neural nets. J. Comput. Syst. Sci.,
50(1) :132–150 (1995).

[31] Strogatz, S.H. Nonlinear dynamics and chaos. West-
view Press (1994).

[32] Sussillo, D. Barak, O. Opening the Black Box :
Low-Dimensional Dynamics in High-Dimensional Re-
current Neural Networks. Neural Computation 25,
626–649 (2013).

[33] Sussillo, D. Neural circuits as computational dyna-
mical systems. Current Opinion in Neurobiology 25,
156–163 (2014).

[34] Sussillo, D., Churchland, M. M., Kaufman, M. T.
Shenoy, K. V. A neural network that finds a naturalistic
solution for the production of muscle activity. Nature
Neuroscience 18, 1025–1033 (2015).

[35] Sutskever, I., Vinyals, O. Le, Q. V. Sequence to Se-
quence Learning with Neural Networks. Advances in
neural information processing system (2014).

[36] Tsodyks, M. and Sejnowski, T. Proceedings of the
Third Workshop on Neural Networks : from Biology
to High Energy Physics. Int. J. Neural Syst. (6) Suppl.,
81 (1994).

[37] Wang, J., Narain, D., Hosseini, E. A. Jazayeri, M.
Flexible timing by temporal scaling of cortical res-
ponses. Nature Neuroscience 21, 102–110 (2018).

