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Abstract We study the memory performance of a class
of modular attractor neural networks, where modules are
potentially fully-connected networks connected to each
other via diluted long-range connections. On this anatomi-
cal architecture we store memory patterns of activity using
a Willshaw-type learning rule. P patterns are split in cate-
gories, such that patterns of the same category activate the
same set of modules. We first compute the maximal storage
capacity of these networks. We then investigate their error-
correction properties through an exhaustive exploration of
parameter space, and identify regions where the networks
behave as an associative memory device. The crucial param-
eters that control the retrieval abilities of the network are
(1) the ratio between the number of synaptic contacts of
long- and short-range origins (2) the number of categories
in which a module is activated and (3) the amount of local
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inhibition. We discuss the relationship between our model
and networks of cortical patches that have been observed in
different cortical areas.
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1 Introduction

Attractor neural networks have been used extensively to
model memory phenomena in the brain (e.g. Hopfield 1982;
Amit 1989; Wang 2001; Brunel 2005). In these models a
memory is represented by a pattern of activity that is able to
self-sustain, thanks to recurrent connectivity, in the absence
of any external stimulus. They naturally possess associa-
tive properties. For instance if an incomplete pattern of
activity representing part of a memory is presented to the
network, it will use recurrent connectivity to reconstruct
the complete memory pattern. Moreover, attractor dynamics
naturally account for the phenomenon of persistent activity
observed in electrophysiological recordings across differ-
ent cortical areas during working memory tasks (Fuster and
Alexander 1971; Miyashita 1988; Funahashi et al. 1989;
Miller et al. 1996; Romo et al. 1999).

Most modeling studies have focused on densely con-
nected networks (where a large fraction of the connections
between neurons can be shaped by the stored memories),
which are appropriate for small cortical networks at the
scale of a few hundred microns (Hellwig 2000; Kalisman
et al. 2005). Other studies have introduced a probabil-
ity of connection that depends on the distance between
neurons (Roudi and Treves 2004, 2006), which allows to
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take into account the fact that the connection probability
decreases with distance as has been shown for networks of
larger sizes (Hellwig 2000). When observed at larger scale,
cortical connectivity is not randomly distributed with a
distance-dependent parameter, but rather shows a non-trivial
structure. For instance, Pucak et al. (1996) have shown that
connectivity from/to patches of pre-frontal cortex of mon-
keys of a few hundred microns send/receive connections
from other discrete patches of cortex that have the shape
of stripes of sizes of a few hundred microns. One patch is
connected to about 15-20 other patches in the same or neigh-
boring areas via grey matter connections, and at least 15-20
other patches connected via white matter connections. Other
experimental studies have identified such a patchy con-
nectivity in sensory cortices (DeFelipe et al. 1986; Gilbert
and Wiesel 1989; Bosking et al. 1997). A few modeling
studies have investigated associative memory properties of
networks that implement a dichotomy between dense local
connectivity and sparse long-range connectivity (O’Kane
and Treves 1992; Mari and Treves 1998; Kropff and Treves
2005; Johansson and Lansner 2007).

In the present work, we study modular networks whose
modules are fully connected networks (short-range connec-
tions) connected through long-range diluted connections.
In order to match available experimental data, we impose
that the numbers of short-range and long-range connec-
tions onto a neuron are of the same order (Braitenberg and
Schiitz 1991; Stepanyants et al. 2009). We model these
networks with binary neurons and binary synapses, for
which the storage properties of fully-connected networks
have already been extensively characterized (Willshaw et al.
1969; Knoblauch et al. 2010; Dubreuil et al. 2014). For
such models, the distribution of the total synaptic input
onto neurons can be expressed analytically, which allows to
probe their associative memory properties. During a learn-
ing phase, the storage of patterns of activity is implemented
using a Willshaw learning rule, that potentiates a fraction of
the pre-existing synapses. The patterns of activity, or mem-
ories, that are stored reflect the modular architecture, in the
sense that each of the memory consists in the activation of
only a subset of the modules. Moreover, patterns are split in
categories: two patterns in the same category share the same
active modules. This is consistent with MRI studies which
show that visually perceived objects that are semantically
close to each other are represented in a similar manner on
the cortical surface (Huth et al. 2012).

After defining our model, we describe the method that
we use to quantify its storage capacity. We then apply
this method to compute the maximal storage capacity the
networks can reach when no associative properties are
required. We then define three canonical error-correction
tasks to be performed by the network, delimit the param-
eter regions where satisfactory associative properties are
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reached, and quantify the storage capacity in these regions.
Last, we discuss in more detail the link between our model
and cortical networks with patchy connectivity.

2 Network model and methods

We consider a network of M modules of N binary neu-
rons connected through a binary connectivity matrix. Below
we describe the dynamics of the network, specify the char-
acteristics of the patterns of activity that are stored by the
network, and describe the connectivity matrix that underlie
the storage of these patterns. Parameters of the model are
listed in Table 1 of the Appendix.

2.1 Dynamics

The activity of neuron i in module m (i = 1..N;m =
1...M) is described by a binary variable S;,, = 0, 1, that
evolves in time according to

Sim(t+1) =0 [him(t) —O0fN], ey

where

N
him(t) = B () + RS, (1) =Y WS,
j=1

N
+) D WS @

n#m j=I

is the total synaptic input on neuron (i, m), i.e. the sum
of a local field hé,m(t) resulting from the activity of neu-
rons belonging to the same module and an external field
h{ (1) resulting from the activity of neurons belonging to
other modules. & = O(1) is an activation threshold, ©® is
the Heaviside function, W;"™" is the efficacy of the synapse
from neuron j to neuron i (both belonging to the same mod-
ule m), while W/"" is the the efficacy of the synapse from
neuron j in module # to neuron i in module m.

2.2 Structured sparse memories

The learning process is assumed to have led to the storage
of P patterns of activity (network states). A given network
state, or pattern, is said to be stored if it is a fixed point of
the dynamics (1). The activity of neuron i in module m in
pattern p, Ef‘ > 18 @ binary 0,1 variable given by the prod-
uct of two binary variables, a macroscopic term Z), and a
microscopic term fi’f m

[1]
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At the macroscopic scale, a fraction F (macroscopic
coding level) of the modules are active in each pattern,

M
m=1

At the microscopic scale, a fraction f (microscopic cod-
ing level) of the neurons are active in any active module m

[1]

L= FM )

N

Y& =N 5)
i=1

Patterns are split in & categories, with p patterns in
each category (P = p&?). Patterns belonging to the same
category have the same set of active modules.

We further impose that each module m is involved in the
same number

c=PF (6)

of categories, this leads to the constraint that & F should
be an integer. Fixing this number for each module rather
than letting it fluctuate from module to module, is the opti-
mal choice in terms of storage. In Section 4.3 we discuss
the effects on storage capacity of fluctuations in num-
bers of active neurons/modules per pattern, and numbers of
categories encoded per module.

2.3 Connectivity

The connection Wi”.m from neuron (j, n) to neuron (i, m)
is described by a binary variable € {0, 1}. The storage
capacity of fully-connected networks of binary synapses
has been extensively characterized (Willshaw et al. 1969;
Knoblauch et al. 2010; Dubreuil et al. 2014). We can thus
use these studies as a benchmark to which the storage capac-
ity of modular networks can be compared. The connectivity
between these two neurons is determined by two factors,
learning and architectural constraints. As a result, Wi’}m isa
product of two terms,
W[;”’ = w;;?"di’;’" with w;’}”, d{’;” € {0, 1} @)
The learning term w?}” follows a Willshaw type learn-
ing rule (Willshaw et al. 1969): the learning variables are
initialized with w;’}.” = 0 and after a learning phase where
patterns are imposed on the network, they are switched to
w!™ = 1 if there exists at least one pattern w such that
B =&Y =1

“im T

The architectural constraint described by d;;.‘” is an asy-
metric dilution term (d;’}” is not necessarily equal to d;”l.”).
We consider networks with potentially fully connected mod-
ules (di™ = 1 for all i, j, m), that is every local synapse
W™ can be potentiated during the learning phase. This
models the fact that local cortical circuits could be poten-
tially fully connected, in the sense that the axon of any

neuron touches (i.e. passes < 2 um by) the dendritic tree
of all nearby neurons (Kalisman et al. 2005; Hellwig 2000).
For the connectivity between modules, we distinguish two
cases. If two modules m and n are never co-activated in a
pattern, then long-range connections do not exist between
these modules (dl.’j?" = 0 for all i, j). If there exists one
category in which m and n are co-activated,

: oy Q
amn — { 1 with probability % ®

& 0 with probability 1 — %.

This implies that neuron (i, m) receives on aver-
age D connections from module n. In order to match
available experimental data (Braitenberg and Schiitz 1991;
Stepanyants et al. 2009), the amount of dilution % is chosen
such that a given neuron in module m receives a number of
contacts from axons originating in remote modules (n 7% m)
that is of the same order than the number of contacts from
axons originating in the local module m. To quantify this,
we introduce the parameter y, defined as the ratio between
the number of long-range contacts, and the number of short-
range contacts. With the previously introduced parameters,

rMD

v="N" €))

where r = 1 — (1 — F2)? is the fraction of pairs of mod-
ules that have been co-activated at least once during the
learning phase. The numerator is then the number of con-
tacts that originate from long-range connections, while the
denominator N is the number of contacts that originate from
short-range connections. The architecture of the model is
described schematically in Fig. 1a-b.

2.4 Scaling of parameters

In the large N limit networks of binary synapses have non-
vanishing storage capacity if the microscopic coding level
scales as f ]“TN (Willshaw et al. 1969; Nadal 1991;
Knoblauch et al. 2010; Dubreuil et al. 2014). To work in this
regime we introduce the parameter

InN .
fzﬂT with 8 = O(1) (10)

In a previous study of modular attractor networks, Mari
and Treves (1998) have shown that if the macroscopic cod-
ing level F goes to zero when the number of modules
becomes large, the number of patterns stored in the net-
work increases with M. We will also study our networks in
this regime. We will show that similar storage capacities are
reached in both cases FM — oo and FM = O(1). Further-
more, for the following calculations to be valid, we assume
that F' is sufficiently small to have FM <« N.

Finally, we have to specify how patterns are split in
categories. An inspection of the terms quantifying the frac-
tion of synaptic contacts activated during the learning phase

@ Springer



J Comput Neurosci

C Pr(k,, = S) pr(i,, =5S) }’7()1

im im

P P, > P,
P P\> Py

Fig. 1 Computing the number of patterns that can be stored in mod-
ular networks. After the learning phase using the Willshaw learning
rule, the network is set in one of the stored patterns E*°, which is
said to be stored if it is a stable fixed point of the network dynam-
ics. a Connectivity onto a foreground neuron for the memory g (red
circle). Connections shown in green create feed-back loops between
foreground neurons which stabilizes pattern Z#0. Black connections
from silent neurons do not influence the stability of this network state,
they have been potentiated during the presentation of a pattern & # (0.
b Connectivity onto background neurons (red circles), one that belong
to a module active in pattern £/° and another one that belong to an
inactive module. Connections onto these neurons result from the pre-
sentation of other patterns @ # (o in which these neurons are active.
The blue and magenta connections from foreground neurons provide
excitation to this neuron, which can potentially destabilize E#°. ¢ The
stability of a pattern can be assessed by evaluating the probability dis-
tributions of the inputs on background neurons (blue and magenta) and
on foreground neurons (green). A tested pattern is stable if the proba-
bility that inputs of all background neurons to be above the activation
threshold 60, as well as the probability that inputs of all foreground
neurons to be below the activation threshold, are vanishingly small in
the large N, M limits. When more patterns are stored in the synaptic
matrix (from P; to P, > Pp), the distribution of inputs on background
neurons shifts its mean towards 6 and gets wider. Evaluating storage
capacity consists in computing the largest P for which a tested pattern
is stable

foreground (active) neuron

background (silent) neuron

|oce

stabilizing connection
destabilizing connection
— neutral connection

allows us to anticipate which of the different regimes (p =
o), P > oc0;p—>00,Z=00)orp > o0, ¥ —
o0) leads to largest storage capacity. After the learning
phase, the fraction of short-range synaptic weights w’; ]

that have been switched to 1 during the learning phase is
1 — (1 — f2fP? and the fraction of long-range synap-
tic weights w’"” (describing a pair of modules that have
been co- actlvated at least once) that have been switched to
1 during the learning phaseis 1 — (1 — fz)”(l""]F ). Both
fractions should tend to a value €]0, 1[, otherwise storage
will be suboptimal: if one of this fraction is 0, a vast major-
ity of the corresponding synapses are in their silent state,
and therefore the connectivity matrix contains a vanishing
information about the set of stored patterns as they do not
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participate in shaping the synaptic currents of specific pat-
terns ; the same is true when the fraction is 1. Inspection
of the expressions above with the scalings f l“TN and
F — 0 leads to the conclusion that the optimal situation
is reached for & % — 00, and p lz — 00, i.e.
each module is involved in a finite number of categories (see
Eq. (6)), with a number of patterns in each category that can

be measured by what we define as the storage load o

a=pf? (11)

With ZF = ¢ = O(1) and F — 0 the expression of y
introduced in Eq. (9) is

Fu2 (12)
= C —,
4 N

which sets the amount of dilution of the long-range connec-
tions, since we keep y of order 1.
We thus focus on the regimes:

- N>»M — oo
~ f=p""and F — 0, with FM = O(1) or FM —
4+ooand FM <« N;
- pff=a=0()and ZF =c = 0(1)
sl D 1

2.5 Analytical methods

Our method consists in computing the distribution of inputs
to different types of neurons of the network. From these
distributions, we assess the stability of learned patterns and
compute the storage capacity. An intuitive picture is given
in Fig. lc.

After the learning phase, we choose one of the P pre-
sented patterns 0, set the network in a state corresponding
to this pattern S = E0, and test whether it is a fixed point
of the dynamics (1).

The stability of pattern E#0 is assessed by computing
the probability P, that the fields on all neurons are on the
right side of the activation threshold 6 f N (see Fig. 1c for an
illustration). To do so, we have to distinguish between three
types of neurons: foreground neurons (neurons (i, m) such
that & ’:‘“ 0 — 1, Fig. 1a), background neurons that belong to
an actlve module ((i, m) such that E/ = 0 but E),’ = 1,
Fig. 1b) and background neurons that belong to an 1nact1ve
module ((i,m) such that E/® = 0 and & = 0). The
probability of E#0 being a flxed point of Eq. (1) can be
written

Pue = (1=Plhim = FNOIELS, = 1)
FM(1-f)N
x (1= Pl = FNOIELS, =0, 0 = 1))

o o (1-F)MN
x (1= Plhin = FNOIELS, =0, 80 =0)) (13)
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In the limit of large networks and for a sparse micro-
scopic coding level, these probabilities take the form (see
Appendix)

P(him < fNO|EL = 1)

exp [—chbf + o(fN)]

P(him > fNO| Bl =0, B4 = 1)

exp [fchp” n o(fN)]

P(him > fNO|E" =0, B =0) = exp [—fN<1>b’ +o(fN))] (14)

i,m m

where the ®’s are rate functions that describe the behav-
jor of the tails of the relevant probability distributions (&7
foreground neurons ; ®”: background neurons in active
modules ; o' background neurons in silent modules).
These rate functions depend on network parameters, pattern
parameters and the number of stored patterns P. Eqs (14)
allow to rewrite P,, as

Pre = exp [— exp(X;) — exp(X,) — exp(X,)] (15)
with

X; = —B®  InN + o(InN) + O(In FM)
X, = —B®’InN +InN + o(InN) + O(In FM)
Xy = —BO” InN +InN +o(InN) + O(n(1 — F)M)  (16)

For P, to go to 1 in the large N limit, we need all X’s
to go to —oo in that limit. Given FM <« N, this will be
satisfied provided that

o/ 6) >0 (17)

and

o2 (0) > 1 (18)
5

Inequality (17) is illustrated schematically in Fig. 1c: the
activation threshold 6 has to be chosen such that inputs to
the FM f N foreground neurons drawn from the green dis-
tribution are above 6. Inequality (18) is also illustrated in
Fig. lc: the activation threshold 6 has to be chosen large
enough, such that inputs to the FM (1 — f)N background
neurons belonging to active modules drawn from the blue
distribution are below 6. There is no inequality involving
the rate function related to errors in modules that are silent
because the probability to activate a neuron in these mod-
ules is much lower than the one to activate neurons in active
modules that receive local noise on top of external noise,
as can be seen from Equation (67) in the Appendix, which
implies that we always have ,BCDI’/ InN > InM for FM K
N. This is schematically represented in Fig. 1c by the fact
that the average of magenta distributions of inputs (on back-
ground neurons in inactive modules) are further away from
the activation threshold 6 than are the blue distributions of
inputs (on background neurons in active modules).

For a given set of parameters (8, ¢, y, F), one can
thus find the maximal number of patterns P, that can be
imprinted in the synaptic matrix while keeping pattern E#0
a fixed point of the dynamics. To do so, we saturate the
two above inequalities. Inequality (17) is saturated by tak-
ing an activation threshold 6 that goes to (h; ,, | Ef‘ 21 =1)
in the large N limit. The threshold can be chosen in this way
because the number of foreground neurons scales as In N
(Dubreuil et al. 2014). Inequality (18) is saturated by choos-
ing a storage load o = a4, such that ob ~ % Then from
Egs. (6), (11),

Amax C N 2
Prax = ,32 f ﬁ (19)

We define the storage capacity of the network (see e.g.
Nadal 1991; Knoblauch et al. 2010) as

Prax Ipattern (20)
N[’

I =

where

Ipatzern = MFN(_fIHZf_ (1 _f)]nZ(l _f))
G,

+

M(—FInp F —(1—-F)Inp(1 - F)) (21)

max

is the information content (entropy) of each pattern. The
term on the first line is the contribution from the micro-
scopic structure, and the other term is the contribution
from the macroscopic structure. The factor % is due
to the fact that there exists only &, not P,,, macro-
scopic patterns (i.e. categories). This expression is a gen-
eralization of the entropy of the distribution of patterns
N(—flny f — (1 — f)Ino(1 — f)) used to define storage
capacity in networks storing unstructured patterns. The
denominator of Eq. (20),

N, = MN> + M(M — 1)N2r2
P N
~ MN*(1+y) (22)

is the number of modifiable synapses, i.e. the amount of
physical substrate used to store patterns. I can be thought of
as the total amount of information stored in the network, in
bits per modifiable synapse (but see Discussion).

With parameters scaling as described in Section 2.4, and
using the definitions (5)—(6), the storage capacity can be
rewritten

1 ouaxc

"= m2saty

where o, can be computed for a fixed set of parameters
(c, B, v, F M) using the method described in 3.1.

(23)
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3 Results

We now apply the method described above to quantify the
storage properties of these modular networks for different
values of the parameters. We first compute the maximal
storage capacity that can be reached by modular networks,
and then study their error-correction properties.

3.1 Maximal storage capacity

In this section, the network state is initialized in one of the
stored pattern E#0 and we find the largest P such that this
network state is stable under the dynamics given by Eq. (1).
From this value of P we compute the storage capacity I.
The stability of a pattern is assessed by expressing the fields
hlf n and hf’ n on foreground and background neurons. The
averages of these fields are

(hl,) = FN+FMfD = fN(1+5)

(h?,) = fNg+ FMfDG = fN(g + %G) (24)
where
g=1—(1— FHr?r 350 1—exp(—ac) (25)

is the fraction of short-range synapses wf;fm that have been
switched to 1 during learning and

P2 ~
G=1—(1— P = ) 1 —exp(—a) (26)

is the fraction of long-range connections wl.”;", m # n, that
have been switched to 1 during learning for two modules m
and n that have been co-activated at least once. In Eq. (26),
« is the storage load defined in Eq. (11). As can be seen
from Equations (25), (26), and as illustrated on Fig. Ic,
when the number of stored patterns is increased, the mean
of the distribution of hf?’ ,n Shifts towards the mean of the dis-

tribution of hlf . and it becomes more difficult to find an
activation threshold separating these two inputs. In order to

assess the stability of pattern E#0, we express the distri-
bution of the inputs via the rate functions (65), (66) when
FM > 1and Egs. (68), (69) when FM = O(1), and apply
the method described in the ‘Methods’ section. The stor-
age capacity is then expressed for given values of c, 8, y
using Eq. (23) and choosing « that saturates inequality (18),
while the activation threshold is chosen as large as possible
to saturate inequality (17). Given the expression of the rate
functions describing the field on selective neurons, we can
choose 6 — (hl.f ) for all neurons. Note that we have only
discussed the fields on background neurons that belong to
active modules. For background neurons in silent modules
their average field is

() = FMfDG' = fN%G’ 27)
where
G =1—(— fHr?r F 0 acF (28)

is the fraction of long-range connections wi”]f", m # n, that
have been switched to 1 during learning for two randomly
chosen modules. As mentioned in the ‘Methods’ section,
these neurons do not constraint storage capacity because the
field they receive is small due to the absence of local inputs
and to the fact that G’ vanishes in the limit F — 0.

With the scaling introduced above, we find that 7 is non-
zero, which means that the maximal number of patterns
P, that can be stored scales as

1/ N\?

In Fig. 2a, we plot the value of the storage capacity (23)
as a function of y for different values of ¢, the number
of categories in which a module is activated as defined in
Eq. (6), and the scaling FM — +oo. For each (y, c) we
choose the value of 8 that maximizes /. In practice the opti-
mization over § is performed in two steps: for a range of
values of the storage load «, the value of § that saturates
inequality (18) is chosen using the expression of ® given in

Pmax

storage capacity O

0.7 0.5
z =y
R Q
8 = 2,
= o5 —c=2 & 04
S c=5 Q
P 04 —c=10 (5]
en --C—00 o0
S 031 —gptimal ¢ e
%6 P o S 03
2 02 Riad @7

107 1072 10° 10° 10°

Y

Fig. 2 Storage capacity of modular networks. a Storage capacity in
the regime FM — oo as a function of y, the ratio between the num-
bers of synaptic contacts from long-range and short-range origins. It is
plotted for different values of ¢, the number of categories in which a
module is activated. b Storage capacity as a function of ¢, the number
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of categories in which each module is involved. ¢ Storage capacity as
a function of FM = O(1), the number of active modules in memory
patterns. For each value of ¢ dashed lines mark the capacity in the limit
FM — +4oofory =1
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the Appendix; and the pair (o, 8) that maximizes I accord-
ing to Eq. (23) is kept. For small y (most of the connections
are short-range) / = 0.69, which corresponds to the storage
capacity of a fully-connected Willshaw network (Willshaw
et al. 1969; Knoblauch et al. 2010; Dubreuil et al. 2014).
For large values of y (most of the connections are long-
range), I = 0.26, the storage capacity of a highly-diluted
Willshaw network as shown in the Appendix. In between
these two limits, the storage capacity interpolates between
the limits of a fully connected network and a highly diluted
network, similar to a previous model of modular attrac-
tor network (O’Kane and Treves 1992). The same trend is
observed when different numbers of categories are involved
in each module (i.e. different values of ¢). For ¢ — o0,
the curve shows a discontinuity in its derivative, which is
due to the fact that in this limit we have either g = O (1) and
G — 0 (a vanishingly small fraction of information stored
on long-range synaptic connections), or g — 1 (a vanish-
ingly small fraction of information stored on short-range
synaptic connections) and G = O(1). For low values of y,
storage capacity is optimized by using short-range connec-
tions (g = O(1) and G — 0), while for large values of y it
is optimized by using long-range connections (g — 1 and
G = 0()).

Figure 2b shows the storage capacity as a function of c,
the number of categories in which each module is active.
Interestingly, storage capacity depends non-monotonically
on ¢, with an optimum at ¢ = 10, 6,4 for y = %, 1,2.

We have also studied the case FM = O(1) and found
that on a broad range of values of F M, the storage capacity
is very similar to the case FM — oo as shown in Fig. 2c,
where y = 1. A similar behavior is obtained for other val-
ues of y. Note that with this scaling, the maximal number
of stored patterns is proportional to the number of modules

Pax & M (25)°.

3.2 Error-correction capabilities of the modular
network

We have shown in the previous section, that networks with
y — 0 are optimal for storage capacity. The extreme case
y = 0 corresponds to a network with exclusively local con-
nections. An important drawback of such a network is there
is no communication between modules. This will be fine
in the case where the network state is initialized in a state
that exactly correspond to a stored pattern, but can be prob-
lematic if the network initial state differs from it. In the
following section, we probe the error-correction properties
of the modular network by studying how its storage prop-
erties are affected when a given level of error-correction is
required, and how this depends on the values of y and other
parameters. Note that our analytical method can only tell us
what happens after a single time step of the dynamics, and

A microscopic pattern
completion

w

storage capacity

@
O
o
Il
W

=2

storage capacity
g o <
o
storage capacity

Fig. 3 Storage capacity with microscopic error-correction. a The net-
work is initialized at # = 0 in a state S*0 which is obtained from the

memory E/° by randomly flipping a fraction E of the neurons state

in active modules m (EL° = 1). b Storage capacity, as a function of y

(E = 0.1), in networks that can retrieve patterns with £ = 0.1. Errors
are corrected by choosing an appropriate activation threshold (see text
for details). ¢ Same as (b), but the storage capacity is plotted as a func-
tion of E for y = 2 and various values of ¢, the number of categories
in which a module is involved. d Storage capacity as a function of y
for ¢ = 5 and different values of E

therefore require that error correction should be performed
on a single time step of the dynamics (1).

Below we consider three different kinds of errors to be
corrected

—  Microscopic pattern-completion where the initial state
S#0 is obtained from a particular memory EX0 by
switching on or off a fraction of the neurons in all active
modules (see Fig. 3a).

— Disambiguation where the initial state S0 is obtained
from E/0 by setting a fraction of the active modules (m
such that 2/ = 1) in a state that corresponds to other
patterns u # o (see Fig. 4a).

— Macroscopic pattern-completion where the initial state
S#o is obtained from E/0 by silencing a fraction of the
active modules and activating a fraction of the silent
modules (see Fig. 5a).

In all three cases errors are introduced while keeping the
overall activity level unchanged, i.e. the overall number of
neurons active in S#0 is the same as in £#0. We quantify
the initial amount of errors by a parameter E, such that for a
given value of E there is the same number of false-positives
(~ MFNfE) and false-negatives (~ M FNfE). A precise
definition of the initial states to be corrected is given in the
following.
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Fig.4 Storage capacity with disambiguation. a The network is initial-
ized at t = O in a state S*° which is obtained from the memory =0
by setting a fraction E of the active modules (a fraction F E of all the
modules) in a local pattern that corresponds to another memory in the
same category Z* with ; # o . b The possibility to find an activation
threshold that correct for that kind of errors depends on the amount of
stored patterns @ = pf 2 that controls the variables g and G represent-
ing the amount of local and external noise. We plot the average fields
onto neurons while the network state is S#0. If the fields on correct
positive and false-negative neurons are higher than the fields on cor-
rect negative and false-positive neurons, it is possible to find 6 such

3.2.1 Microscopic pattern-completion

Here, we initialize the network in a state S#°, which is
obtained from E#° by randomly flipping neurons in active
modules. The state of a neuron (i, m) belonging to an active

module m (E4° = 1) becomes

sto =gl (1-x7,) + (1-g5) xp,, (30)

where

Xifm _ { 1 W%th probab%l%ty(l - f)E a1
’ 0 with probability 1 — (1 — f)E

while

Xt = {0 wits ottt 1 - 15 @)

—

In order for the network state to flow towards E0 in
a single time step of the dynamics (1), we need an acti-
vation threshold that is above the input received by ‘false
positive’ neurons (Slff 0 =1and Ef‘ % = 0, neurons filled
with black with no red circles in Fig. 3a), and below the
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that the network performs disambiguation. ¢ Quantification of storage
capacity of networks that perform disambiguation as a function of y,
for E = 0.1. To get the full lines, we find the values of (Bax» Xmax)
(for each value of y) for which the storage capacity is maximal. Then
at fixed B4y, we find the value «,,;, for which A9 becomes negative
(see B), inserting (Bqx, ¥min) into the formula for storage capacity
(23) we get the dotted lines. Thus the region of the plane between the
full lines and the dotted lines delimits for which storage load the net-
works perform disambiguation. d Same as C but the storage capacity
is plotted as a function of E for y =2

input received by ‘false negative’ neurons (S;f 3’ = 0 and
Ef‘ 31 = 1, unfilled neurons circled in red). Considering the
averages of the inputs to false negatives and false positives,
the activation threshold has to satisfy

|4

0
g+lG < <(-E)+Eg+20-E)+LGE 33)
c fN c c

where the four terms in the right hand side are the respec-
tive contribution of the correctly active neurons in the local
module, the false-positive neurons in the local module, the
correctly active neurons in remote modules, the false pos-
itive activated neurons in remote modules. Once errors are
corrected, the larger the activation threshold we take, the
more patterns we can store before background neurons
are destabilized. And as before, we can take an activa-
tion threshold that tends in the large N limit towards the

average of the fields on false negative neurons: 6 —
N—+o00

fN( — E+ Eg+ L1 - E)+ LG). Using this activa-
tion threshold in the expression of the rate functions (65),
(66) we can estimate the storage capacity of the networks
when microscopic error correction is required. The result is
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Fig. 5 Storage capacity with macroscopic pattern completion. a The
network is initialized at # = 0 in a state S*° which is obtained by turn-
ing on or off the activity of a fraction FE (E = 0.1) of the modules.
Wrongly active modules are set in a state that corresponds to another
memory i # wo. b Storage capacity as a function of y. In order to

shown in Fig. 3b where we plot the new storage capacity
as a function of y for different values of ¢ and £ = 0.1
(the optimization over the parameter B is performed as
described in the previous section). In this case again, the
optimal storage capacity is reached for small values of y
(short-range connections dominate), because microscopic
errors correspond to small deviations around local attractors
which do not require communication between modules to
be corrected. Unsurprisingly, the storage capacity decreases
monotonically with E, as illustrated in Fig. 3c.

3.2.2 Disambiguation

Now the network is initialized in a state SH0 =
(Sl“ﬁi = S,ﬁos;ff»i . such that S4° = E4° but a fraction E
of the active modules are in a state that is not the correct one:
;0 = éi“,f“" (see Fig. 4a). In such a state, fields on false
pésitive neurons have an average fN + fN %G, where the
first term describes local inputs and the second inputs from
long range inputs. And fields on false negative neurons have
an average fNg + fN(X(1 — E)) + fN(XEG), where
again the first term describes local inputs, the second term
describes long-range inputs from modules in a correct state
and the third term describes long-range inputs from mod-
ules in a wrong state. In order to perform disambiguation
the activation threshold has to be set between these average

values:

1426 o1V a—Eq-0) (34)
c fN c

Note that fields on correct foreground neurons (with aver-
age 1 + %(1 — E % (1 — G))) and correct background
neurons (with average g + %G) do not constrain the choice
of activation threshold to perform disambiguation as illus-
trated in Fig. 4b. Inspection of Eq. (34) at low storage
(g, G =~ 0) tells us that in order to find an activation

10' 10°

perform pattern completion, y has to satisfy (43). ¢ Storage capacity
with local inhibition. The constraint on y can be relaxed by adding
local inhibition (see (44)), the new constraint is given by Eq. (46). For
n > 1, macroscopic pattern completion do not set any constraint on y

threshold that performs disambiguation, the amount of long-
range connections has to be large enough,

C

> .
Y21_E

(35)

When the storage load increases (o« = pf? increases thus
g, G = O(1) increase), at fixed y, c, the distance between
the left-hand side and the right-hand side of Eq. (34)
increases, and in fact it becomes easier to find an activation
threshold separating the inputs to false positive and nega-
tive, as illustrated in Fig. 4b where we highlight the range of
o where it is possible to find a relevant activation threshold.
The figure shows that for these fixed values of 8, y, ¢, when
y < ﬁ it is only from a minimal non zero value iy
that the network can perform disambiguation. The storage
capacity of networks performing disambiguation is shown
by the full lines in Fig. 4c, while the dotted lines show the
storage capacity associated with the minimal amount of pat-
terns (given by o, ) that need to be stored in order to find
a value of 6 that performs disambiguation. When y is suf-
ficiently large, i.e. (35) is satisfied, o;,i, = 0. We show
results for different values of ¢, the number of categories in
which a module is involved. When the modules are active in
a single category, g = G and A6 > 0 can be satisfied if and
only if Eq. (35) is satisfied, while when ¢ > 1, g increases
faster than G with «, and Af > 0 if and only if

y > exp (—a(c — 1)). (36)

c
1-E

Thus the constraint (35) on y can be relaxed, but the price
to pay is that the network performs disambiguation only if
a sufficient amount of patterns are stored in the network,
and that the activation threshold ¢ + £ (1 — E(1 - G))
should increase as more memories are stored. With dis-
ambiguation, the storage capacity increases monotonically
with y (Fig. 4c), which is the opposite of the behavior in
the microscopic-error correction case. To explain why in the
disambiguation case, storage capacity increases with y, it
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is instructive to consider the case £ <« 1. Then the acti-
vation threshold that we choose to perform disambiguation
is Ogis = g + %, which we can compare to the activation
threshold we choose when no error correction properties are
required, 6y = 1 + % (i.e. the average field on foreground
neurons when the network is in the stored pattern). Increas-
ing y allows 6;;5 to get closer to the maximal activation
threshold 6.

In Fig. 4d, we show the storage capacity as a function of
E for y = 2. Note the abrupt drop in storage capacity for
¢ = 1 when E reaches the point where Eq. (35) is violated.

3.2.3 Macroscopic pattern-completion

We now consider the situation in which the initial macro-
scopic state of the network S#0 is not consistent with Z#0
(see Fig. 5a):

Sim = SpSim with S, = (1 — X)) 80 + Xb (1 — g0y
(37

x/ — 1 with probability (1 — F)E 38)
"™ 71 0 with probability 1 — (1 — F)E

and
1 with probability FE
b _ p y
Xm = 0 with probability 1 — FE (39)
The microscopic activity is given by
MM 3£ gl — Jand X}, = 1
Sim = Lo . (40)
Si,m otherwise

This differs from disambiguation where the state of mod-
ules is always correct (S,, = E), here a fraction (1 — F)E
of the FM foreground modules are silent, and a fraction
FE of the (1 — F)M silent modules are active in a state
supported by local connections as shown in Fig. 5a. Note
the dependence of © on m in Eq. (40) which implies that
erroneously active modules do not interact with each other
through long-range connections. In order to correct for this
kind of error, the activation threshold has to separate fields
on false positive and false negative neurons, which leads to
the inequality

0
1+Y6¢0-B<—<Ya-p+YcE (41)
c fN ¢ c
where G’ is the fraction of co-activated synapses between
two neurons taken in randomly chosen modules (as opposed

to modules that are co-activated in a given category),
defined in Eq. (28). G’ goes to 0 in the regime we are
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considering, which leads to the constraint on the activation
threshold

0 4
1<f—N<z(l—E) (42)

In order to find such a threshold, we should be in a
parameter regime such that

c
1-E
This is the same constraint as the one obtained for the dis-
ambiguation task at low storage load (see Eq. (35)), which
corresponds to the fact that currents coming from long-
range connections alone has to be able to activate silent
neurons that are foreground neurons for the pattern to be
retrieved (see empty red circles in Figs. 4-5a)

We have computed the storage capacity that can be
reached by taking 6 — %(1 — E). Results are reported
in Fig. 5b. From this plot, memory performance increases
with y, and the amount of long-range connections required
to perform macroscopic pattern completion increases lin-
early with ¢ the number of categories in which a module is
involved. This is because when c increases, more pairs of
modules are co-activated and the total amount of long-range
connections, fixed by the constraint (9), is spread on more
pairs of modules rendering the effect of long-range inputs
less efficient. Note the similarity with the disambiguation
task described in Section 3.2.2.

Y > (43)

3.2.4 Macroscopic pattern-completion with local inhibition

The amount of long-range connections required to perform
macroscopic pattern completion can be decreased by using
local inhibition. The introduction of inhibition is compen-
sated by lowering the fixed activation threshold 6. Having
a smaller fixed activation threshold, makes false-negative
modules (m such that S4° = 0 and EL’ = 1) more sensitive
to long-range inputs compare to the case where there is a
large fixed threshold without local inhibition. Formally, the
input to neurons becomes

Z Jm+ZZW'nn IR

j=1 n#Em j=1

N
2_: m m
(44)

and the constraint on 6 to perform macroscopic pattern
completion becomes

| b Ya-k 45
—n< f_N < Z( —E) (45)
In Fig. 5c, we show, for ¢ = 1 and £ = 0.1, how
the storage capacity evolves as a function of y. The min-
imal amount of long-range connections required to per-
form macroscopic pattern completion can be dramatically
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reduced by increasing the strength of the local inhibition.
The constraint on parameters is now

c

T E (46)

y>0-n

Storage capacity can decrease or increase with y,
depending on 7, this reflects the two competing effects of
the decrease of storage capacity with y (cf Fig. 2a) in the
absence of error correction properties, and the need to use
long-range connections to perform error correction. For low
inhibition, capacity increases with y; for high inhibition,
the opposite occurs. There is an intermediate range of val-
ues of n for which there exists an optimal value of y (see
the case n = 0.8 in Fig. 5c¢). The best performance are
reached when the inhibition is taken as n = 1 + LE, the
value for which, once the pattern is retrieved, the effec-
tive threshold is close to the field on foreground neurons:
0+n Z;y=1 Sjm — 1+ L. For larger inhibition the field
on foreground neurons is not strong enough to overcome
inhibition and no patterns can be retrieved.

Note that for errors considered in the previous sec-
tions, replacing part of the threshold by inhibition does
not improve pattern completion abilities. This is because
both inputs on false-positive and false-negative neurons are
affected the same way by inhibition since both of these types
of neurons belong to modules with f N active neurons. For-
mally a term —n is added to both sides of inequalities (33)
and (34), which therefore remain unchanged.

3.2.5 Storage capacity of networks performing all forms
of error correction

In the previous sections, the storage capacity was optimized
with respect to the parameter 8 for each error-correction
task separately. To synthesize the results of the three pre-
vious sections, here we set 8 to its value that optimizes [
for all the three different tasks. Results are summarized in
Fig. 6, where we plot the capacity (full lines) that can be
reached while a network with inhibition performs micro-
scopic pattern completion, disambiguation and macroscopic
pattern completion, with the same error correction level E
for all three types of error correction. In this figure we also
show dotted lines (as in Fig. 4c, d) below which the storage
load is not high enough to find an activation threshold sat-
isfying (34) and therefore the network is unable to perform
disambiguation. On panel A, we show how the maximal
storage capacity behaves as a function of y for E = 0.1
and n = 1 (the value of 8 being chosen to maximize stor-
age capacity). Storage capacity increases with y, as well
as the range of storage load on which the model performs
well (see dotted lines). The larger the value of c, the better
performance is for values of y < 5. Although note that
for values of y < ﬁ, networks have to be loaded with a
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Fig. 6 Storage capacity of networks performing all forms of error-
correction. a Full lines show storage capacity as a function of y, and
dotted lines delimit the range of storage loads (parameter «) in which
the network is able to perform disambiguation. b Storage capacity as
a function of E, the parameter quantifying the amount of error to cor-
rect, on the x-axis. ¢ Storage capacity as a function of 7, the parameter
quantifying the amount of local inhibition for y = 2 and E = 0.1.
Different curves correspond to different values of ¢ in panels Ato C. d
Storage capacity when the amount of errors in the microscopic error-
correction task E,;,;.-, becomes larger than the amount of errors in the
disambiguation and macroscopic error-correction tasks

sufficient number of memories to perform well. If one con-
siders values of y > ﬁ, the value of maximal storage
capacity is similar for all values of c.

In panel B, we study the dependence on E for y = 2
and n = 1, as expected storage capacity decreases with the
amount of errors to be corrected. We then inspect the effect
of changing the amount of local inhibition n, which has
been introduced to relax the constraint (43) on y to perform
macroscopic pattern completion. This is shown for E = 0.1
and y = 2 (panel C) and y = 1 (panel D). The more ¢
increases, the closer n has to be to 1 for the network to have
a finite storage capacity. For instance for ¢ = 10, it is only
between n = 0.8 and the maximal value 14 %E that storage
capacity is non-zero. This is because the ability to perform
macroscopic pattern completion requires y > (1 — 1) =%.

In summary, the overall performance of the network is
mainly constrained by the disambiguation task that imposes
y > ﬁ for ¢ = 1. For ¢ > 2, there are no strong con-
straints on y (although the networks have larger storage
capacity at larger y) but disambiguation is possible only in
a limited range of storage loads (dotted lines). For the par-
ticular value n = 1 used in Fig. 6a, the storage capacity
of the network performing the three error-correction tasks
is the storage capacity obtained when only disambiguation
is required (compare Figs. 6a and 4c). The requirements of
macroscopic pattern completion do not put a strong con-
straint on the values of y, provided that local inhibition can
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be tuned such that y > (1 — n)1=5. Microscopic pattern
completion does not particularly constrain the parameters of
the network: even though storage capacity decreases with y
when only microscopic pattern-completion is required, it is
the disambiguation task that imposes the increase of storage
capacity with y. However, if the amount of errors to be cor-
rected for the microscopic pattern-completion task becomes
sufficiently larger than the amounts for the disambiguation
and macroscopic pattern-completion tasks, the optimal stor-
age capacity can be reached at an intermediate value of y.
This can be seen in Fig. 6¢c where we plot the storage capac-
ity as a function of y for an amount of error E = 0.1 for the
disambiguation and macroscopic pattern completion tasks,
and an amount E,;., > E of errors for the microscopic
error-correction task (n = 1, ¢ = 2).

4 Discussion
4.1 Summary of results

In this article we have explored the parameter space of a
class of multi-modular attractor neural networks and quan-
tified their memory performance in this space. In order to
perform this detailed characterization, we have considered
large networks where the number of modules and the num-
ber of neurons per module is large (M, N — +00), with
the constraint N > M. We have first focused on the max-
imal storage capacity of these networks, i.e. the maximal
number of patterns that can be stored without requiring
error-correction properties. Our ‘Willshaw type’ networks
can behave as an efficient memory storage device in the
sense that their storage capacity is of order 1. In the limits
of sparse patterns of activity we have considered, ¥ — 0
(sparseness at the level of module activation) and f o ]“TN
(sparseness at the level of single neuron activation), this
amounts to state that the number of stored patterns scales as
Ppax < + (%)2 We have shown that in the case where
F %, storage capacity also remains finite (see Fig. 2c),
meaning that the number of stored patterns can be propor-
tional to the number of modules in the network. In order
to quantify how modules are interconnected, we have intro-
duced a parameter y, the ratio between the numbers of
synaptic contacts of long-range and short-range origins a
neuron receives. We have found that when this parameter
y is varied from small to large values, the storage capac-
ity of modular networks varies between the one of a fully
connected network and the one of a highly diluted network,
which corresponds to the fact that when y — 0 patterns
of activity are stored exclusively on short-range connec-
tions that are part of fully connected networks, and when
y — 400 patterns of activity are stored exclusively on
long-range connections that are highly diluted.
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One particularity of our model resides in the structure of
the set of stored patterns, namely that P stored patterns are
split in & « % categories. Two patterns belonging to the
same category have the same F'M active modules. From the
point of view of a single module, we have imposed it is acti-
vated in ¢ = int[ZF] categories. Interestingly, for each
value of y there exists a value of ¢ that optimizes storage
capacity (e.g. ¢ = 6 at y = 1, see Fig. 2b). In a model
without categories (for each pattern the identity of active
modules is chosen randomly and independently of the other
stored patterns), storage capacity or error correction prop-
erties of the networks are similar to the one described here
(Dubreuil 2014), one difference is that the modular sparse-
ness F' can not be taken to scale as low as %, and the number
of stored patterns can not scale linearly with the number
of modules in the network. Such a pattern structure is a
first step towards modeling the fact that semantically sim-
ilar objects elicit similar cortical patterns of activity when
observed at the scale of «~ 1mm (Huth et al. 2012). It
would be interesting to study different pattern structures,
as e.g. a structure in which similarity across patterns varies
continuously rather than in a discrete manner.

We have also quantified the storage capacity of modular
networks with error-correction (or associative) properties.
We have considered three canonical types of errors, namely
microscopic pattern completion, disambiguation and macro-
scopic pattern completion (see Figs. 3a, 4a and 5a). We
have seen that if the network is required to perform well on
all these error-correction tasks on a full-range of storage
loads, the constraint y > 1= needs to be satisfied where E
quantifies the fraction of errors to be corrected. In qualita-
tive terms, it implies to have more long-range contacts than
short-range ones, as ﬁ > 1. We have also seen that for
values of y smaller than ﬁ, if ¢ > 2, and if the amount of
local inhibition is high enough to satisfy y > (1 —n) <%
the networks can reach a reasonable storage capacity. The
ability to correct for the three kinds of errors in this regime
of low y is paid by the existence of a region of storage
load where the networks can not perform disambiguation
(represented by dotted lines in the figures), moreover in the
region of storage load where it can, the activation thresh-
old has to be adjusted according to the storage load. Note
that the ability to perform disambiguation and macroscopic
pattern completion strongly depends on the ratio %, which
scales the strength of the recurrent input from long range
origin when the network is in one of the stored patterns (see
(24) for instance). The inverse dependence on ¢ comes from
the fact that if ¢ increases, the number of pairs of modules
that get connected during the learning phase increases, and
the amount of long-range connections between two given
modules is effectively reduced.

The storage capacity of modular networks remain below
the storage capacities of networks with no structure: a
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fully-connected Willshaw network has a capacity of 0.69
(Willshaw et al. 1969; Knoblauch et al. 2010; Dubreuil et al.
2014), while modular networks studied here have a lower
capacity. Thus, in terms of storage capacity, it would be
more efficient to store patterns of activity in multiple dis-
tinct unstructured networks. However, such networks would
be unable to perform error correction at the macroscopic level.

4.2 Comparison with previous models

Modular networks have also been studied by other authors.
O’Kane and Treves (1992) have studied a model with
threshold linear units and synaptic weights that can take a
continuum of values. They also found an storage capacity
of order 1. Similarly to our study, they found that when
y is varied from O to large values, the storage capacity
varies from the one of a fully-connected networks to the
one of a highly diluted networks. In their study they found
that together with stored patterns, other states (‘memory-
glass states’), are minima of the energy function describing
their network. These states correspond to modules sustain-
ing one of their local pattern, with the global combination
of modules activity inconsistent with the stored patterns. In
our model such states are destabilized when the activation
threshold is high enough, such that only states that are cor-
rect combination of local activities are stable. We believe
that these states could also be destabilized in their model,
by taking into account an appropriate activation threshold.
In a subsequent study, Mari and Treves (1998) introduced
a parameter controlling the macroscopic sparseness and
showed that it allowed to store a number of patterns that
increases with the number of modules in the network. In
this model, they also introduced a bias in the statistics of
the patterns to store, such that pairs of modules between
which long-range connections exist tend to be co-activated
in a number of global patterns that is larger than expected
by chance. This improved the model previously studied
by O’Kane and Treves (1992) by reducing the size of the
region of storage load in which stored patterns are stable
together with memory-glass states. Our model, where pat-
terns are organized in categories, has a similar feature since
two connected modules (that are co-activated in at least one
category) are likely to be involved in more patterns of activ-
ity than a pair of modules taken at random. However as
our model does not exhibit memory glass-state, such a fea-
ture is not crucial for its performance and in fact a model
with non-categorized patterns can have similar behavior
both in terms of storage capacity and associative properties
(Dubreuil 2014).

In a following study, Mari (2004) focused on the dynam-
ics of pattern retrieval and proposed an oscillatory mecha-
nism that allowed to get rid of these memory-glass states.
It should be mentioned that in all these models (Mari 2004;

O’Kane and Treves 1992) the same local pattern is used in p
several global patterns, while in our case one local pattern is
used in only one global pattern. They have found (O’Kane
and Treves 1992) that the number of patterns stored in
the network increases linearly with w, while the storage
capacity decreases with .

Johansson and Lansner (2007) explored the storage
capacity of a modular attractor network with three lev-
els of spatial organization (neurons, mini-columns, hyper-
columns) while in our model we have only two levels of spa-
tial organization (neurons and modules). They focused on
finite-size networks and studied the storage capacity using
a signal to noise ratio analysis. Doing so they were able to
derive constraints on the number of neurons composing a
mini-column and on the number of mini-columns compos-
ing an hyper-column for the network to have a reasonable
storage capacity. In this work, long-range connectivity is not
patchy in the sense that connections from two pre-synaptic
neurons in the same column do not necessarily end up in the
same ensemble of modules. In a subsequent work Meli and
Lansner (2013) added the constraint of patchy connectivity
and found similar storage capacities. This result also holds
for our model, it is shown elsewhere that a similar storage
capacity can be obtained in a model with non-patchy diluted
long-range connections (Dubreuil 2014).

While it is difficult to give quantitative comparisons of
the storage capacity of our model with others given the
specificities of each model and the differences in analysis,
we arrive at the similar conclusion than Mari and Treves
(1998); Mari (2004); Johansson and Lansner (2007) that
modular attractor networks have reasonable storage perfor-
mance. An interesting feature of our model is the absence
of spurious states which spares us from introducing addi-
tional mechanisms to destabilize these states. The main
novelty of our study is the detailed study of the error-
correction abilities of the modular network, which allowed
us to quantitatively discuss the important parameters (ratio
of long/short range connections, local inhibition, number of
categories) that allow large storage capacities together with
associative properties.

We have defined the storage capacity (20) as the total
number of stored patterns, multiplied by the entropy of the
distribution of patterns, divided by the amount of ressources
used for storage. This measure can be interpreted as the
information stored in the system in bits/synapse. It is a
generalization, for modular networks, of the capacity mea-
sure used in studies of fully-connected associative memories
with binary neurons (see e.g. Nadal 1991; Knoblauch et al.
2010). However, identifying this measure as an ‘informa-
tion’ leads to the following paradox: In the standard Will-
shaw autoassociative network, the storage capacity is 0.69.
However, since the connectivity matrix is symmetric, there
are only N(N — 1)/2 independent binary elements that can
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be used to store the patterns. If the storage capacity is iden-
tified as information stored per independent binary plastic
element, this leads to a stored information of 1.39 bits per
independent binary storage device, which violates the bound
from information theory that states that it should be impos-
sible to store more than 1 bit of information per binary
storage element. For this reason we have refrained from
using the word ‘information” which was used in previous
studies (Nadal 1991; Knoblauch et al. 2010).

4.3 Extension to more realistic models

Our model and analysis could be modified to include more
realistic features. For instance studies of storage capacity of
modular networks have been carried in the limit where M
the number of modules and N the number of neurons are
infinite, or in finite networks of small sizes. In a previous
study, we have quantified finite-size effects in fully con-
nected networks (Dubreuil et al. 2014). The leading order
corrections due to finite size effects scale as % and
lead to a decrease in storage capacity of a factor around 3
for fixed size patterns as the one considered here (in each
pattern exactly FMfN neurons are active). For modular
networks, the first order correction term is proportional to
1n](rllnNN ) 4 lnl(f 13/1 ) which decays extremely slowly as N and
FM become large (it is ~ 0.6 for N = 10° and FM =
100). We thus expect a drop in capacity of the same order
as the one observed for fully connected networks. Besides
this drop in capacity, we expect that for finite size net-
works, the regions of parameters in which networks perform
error-correction remain the same. Indeed, error correction
is possible if the stability of patterns is achieved by a suffi-
cient amount of long-range inputs compared to short-range
inputs, and the ratio of these two quantities is quantified by
% which is independent of network size.

All the patterns we store have the same number of active
neurons spread in the same number of modules, one could
imagine storing an ensemble of patterns where the numbers
of active neurons/modules fluctuate from pattern to pattern.
For such patterns to be fixed points of the dynamics, the
activation threshold has to be lowered to ensure the stability
of patterns with a small number of active neurons. In finite
networks, lowering the threshold decreases the number of
patterns that can be stored (Dubreuil et al. 2014). Another
quantity which is susceptible to fluctuate is ¢, the number
of categories encoded per module. If we would let ¢ fluctu-
ate, the storage capacity would be limited by modules that
encode the largest number of categories since these modules
are more densely connected, which increases the chance
to activate background neurons. Such limitation would be
attenuated for large values of y where storage is supported
mainly by long-range connections.
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The learning rule used in this work requires that patterns
are learned off-line, and does not allow the networks to have
palimpsest properties, i.e. the ability to continuously learn
new patterns (at the expense of erasing old ones). A popular
learning rule to learn patterns on-line in networks of binary
neurons and binary synapses is the one proposed by Amit
and Fusi (1994). For this rule plasticity is activity dependent
on a stochastic manner, and the presentation of a pattern
leads not only to the activation of synapses between pairs of
‘active-active’ neurons (LTP), but also to the inactivation of
synapses between pairs of ‘silent-active’ neurons (LTD). If
LTP and LTD are well balanced, the network is able to con-
tinuously learn new patterns by erasing old ones. Extending
our calculations to such a rule should be straightforward,
similar to what has been already done for local unstructured
networks (Dubreuil et al. 2014).

Our networks are composed of binary neurons. A major
challenge is to understand whether networks made of more
realistic neurons could have similar performance. Networks
of fully-connected spiking neurons in the balanced regime
can not stabilize patterns of activity with coding levels
smaller than f \/LN’ because the signal on foreground
neurons would be wiped out by the activity of background
ones (Brunel 2003; van Vreeswijk and Sompolinsky 2003).
For modular networks, we expect a similar constraint, f

\/LN since each neuron receives inputs from a number of

neurons that scales with N (because of the dilution of long-
range connections). Coding levels obeying this scaling seem
too large to have reasonable storage capacity with the binary
synapses used in our model, as it would require f o h‘TN
(Willshaw et al. 1969). However in our previous study on
fully-connected networks, we have seen that for finite net-
works of realistic sizes (e.g. N ~ 10%), the coding levels
optimizing storage capacity are not far from f = \/LN
We thus expect that modular network of spiking neurons
with binary synapses could also have reasonable storage

capacities.
4.4 Relationship to experimental data

In attractor network models, patterns of activity are
imprinted in the synaptic matrix of the network, and are
retrieved under the form of a neural state of persistent activ-
ity. These basic mechanisms are in principle implementable
in cortical circuits, as cortical synapses have been shown to
be plastic in an activity dependent manner (Markram et al.
1997; Sjostrom et al. 2001) and are thus susceptible to sus-
tain long-term storage of patterns of activity. Furthermore,
the phenomenon of persistent activity has been observed in
many cortical areas during working memory tasks such as
delay-match to sample tasks (see e.g. Fuster 1995).
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A fully-connected module in our model can be consid-
ered as approximating a cortical patch as the one observed
in visual and pre-frontal cortices that we described in more
details in the introduction (DeFelipe et al. 1986; Gilbert and
Wiesel 1989; Bosking et al. 1997; Pucak et al. 1996) - full
connectivity is only an approximation in the sense that cor-
tical patches have a size of the order of Ilmm?, and it is
known that for such large networks, the probability that two
neurons touch each other depends on the distance between
them (Holmgren et al. 2003; Perin et al. 2011). In our model,
modules are connected to each other via diluted long-range
connections, whose amount is controlled by a parameter y .
y is the ratio between the number of contacts whose pre-
synaptic neurons are outside of the module to which the
post-synaptic neurons belongs to and the number of con-
tacts within this module. Anatomical studies indicate that
this ratio is of order one: Braitenberg and Schiitz (1991)
estimated, in rodents, that short and long-range connections
come in approximately similar numbers, while Stepanyants
et al. (2009) estimated y =~ 3. Besides being as numer-
ous as short-range connections, long-range connections are
patchy in our model, in the sense that the long-range con-
nectivity originating from one module target only a subset
of all the other modules. This is in agreement with the above
mentioned studies of cortical patches (DeFelipe et al. 1986;
Gilbert and Wiesel 1989; Bosking et al. 1997; Pucak et al.
1996).

Another assumption regarding connectivity in our model
is the choice of binary synapses. Whether real synapses are
best described by binary variables, discrete variables with
a large number of states or continuous variables, is still
unresolved (Petersen et al. 1998; Montgomery and Madison
2004; O’Connor et al. 2005; Enoki et al. 2009; Loewenstein
etal. 2011).

In our model, the structure of the patterns of activity
strictly corresponds to the anatomical structure of the net-
works, i.e. in a given pattern each module is either totally
silent or f N neurons are active. fMRI experiments allow to
study how neural representations of objects are distributed.
Huth et al. (2012) found that visual presentations of objects
elicit, in human observers, a pattern of activity spanning the
entire cortex. In prefrontal cortex, these patterns consist of
changes in activity of small pieces of cortex of a size of the
order of a millimeter squared. In our model we assume that
patches selective to a given object correspond to networks of
connected cortical patches as the ones described by Pucak
et al. (1996). This is not such a bold assumption as it has
been shown that neurons belonging to connected patches in
visual cortex tend to have similar selectivity (Bosking et al.
1997, Buzas et al. 2001).

Moreover, stored memories are split in categories, such
that patterns of activity coding for memories belonging to

the same category involve the same set of active modules.
This is a first step to account for the observation that objects
that are semantically close to each other are represented
similarly on the cortical surface, while the neural represen-
tations of semantically far apart objects are dissimilar (Huth
et al. 2012). In our model, from one category to another,
the set of active modules are drawn independently. Experi-
mental data rather suggests a smooth transition, in terms of
neural representations, between categories that are seman-
tically close to each others (Huth et al. 2012). This could
be modeled by taking patterns with multiple levels of hier-
archy, and it would be interesting to investigate how such
patterns can be stored in networks with realistic connectivity
constraints.

Our results show that the performance of a modular
network as an auto-associative memory device is strongly
determined by the parameters ¢, y and 5. In principle if
these parameters could be estimated for a given cortical net-
work, then it should be possible to determine whether it is
well suited to store objects it represents via attractor dynam-
ics. Although this seems a difficult task for a randomly taken
set of cortical patches, this could be done for specific sets
of patches, like the well identified network of face patches
(Tsao et al. 2003).
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Appendix

Estimating the storage capacity requires to compute the
distributions of the inputs on foreground and background
neurons. Because neural activity and synapses are binary,
these inputs are sums of binary random variables. We first
present general results about such sums, that will be used
later to compute the distributions of inputs to neurons.

We consider a random variable &

K
h= Z Xk (47)
k=1

where the X; are independent binary random variables
described by a parameter g:

X, — { 1 with probability ¢ (48)

0 with probability 1 — ¢

The sum £ is then distributed according to a binomial
distribution

P(h=S) = <I§)qs (1—-fs (49)
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Note that to get this binomial distribution, we have to
assume the Xj’s are independent. In our case, this means
that two synapses on the same neuron Wi’;.ll’" and Wi’;lz’n
are treated as independent variables. This is a reasonable
assumption to make as we have

POW™ =1 =1-(1— fHpe (50)
and

BV = W = 1)

=1-(0-fra-f =~ PWIM=1 (5D

f—>0,;c—> 0o Y1

and similarly for long-range connections IP’(W;?I’”
W=D > BV =),

L2 —0, pc—00 11
We will consider cases in which K and S are large.
We can then use Stirling formula to express the binomial
coefficients and write

P(h=S)=exp (—K<D (%,q) +0(K)> (52)

with

e o) 252
(53)

We use the superscript fc as this expression will be
mainly used to describe fully connected sub-networks. For
diluted enough networks, we will have ¢, % « 1,1t is then
useful to introduce

dc S S S/K S

In our networks, when testing the stability of a given pat-
tern E0 it is useful to separate the total input into a local
part and an external part. The local part is described by a
couple (K, g), where K = fN is the number of neurons
active in a given local network, and ¢ = 1 or g depending
on whether we are considering the input onto a foreground
or a background neuron. The external part can also be
described by a couple (K, g) with K = F(M — 1)fN or
K=FWM-1)(1-—f)Nandg = % or %G for foreground
or background neurons.

The distribution of the total input on a neuron can be
written

Plhim=S)= )

S1,8e/S1+Se=S

P (S)Pe(Se) (55)

To compute it, we first need to express the distribu-
tion of the inputs generated by the local module and the

@ Springer

distribution of the inputs generated by the other mod-
ules. In the asymptotic limits we consider, this sum will
be dominated by the most probable term of the sum, we
will thus need to find the couple (S, S.) that maximizes
P (SHP(Se)-

Distribution of inputs and probability of no-error
in multi-modular network

Case FM — +00

We apply the method sketched above, first to compute the
distribution of inputs on foreground neurons, and then on
background neurons.

Foreground neurons The distribution of local inputs is a
delta function IP;(S;) = 6(S; — fN) as exactly f N neurons
are active in each module in each pattern, and because of
the fact that each module is a fully-connected network. The
external component is the sum of the activity in each of the
other FM —1 >~ F M active modules when their states coin-
cides with the pattern E#0 we are trying to retrieve. Given
the above results on sum of binary variables, it writes

FMFN\ ( D\* D\ FMIN=Se
raso = (M) (%) (-%)

= exp [—fNCDdC (se’ %)] (56)
with s, = Sjv.

The total input on foreground neurons is then

P(him = S= fN + S,|E/ =1)

“im T

= exp [—chbdc (S— Z) + o(fN)} (57)
fN ¢

Background neurons in active modules The local input

now fluctuates because inputs are mediated by synapses that

have been potentiated during the presentation of randomly

drawn patterns E“710_ 1t is distributed according to

(fN)gS’(l — o)/ NS

Pi(S1) 5

exp [—chbe (;—I’V g) + o(fN)} (58)

where g is defined in Eq. (25). Similarly, the external part
of the input is distributed according to

FMfN\ (D \* D \FMIN=S.
-G 1- =G
(") (5e) (1-%9)

exp I:—fNQD‘l” (

Pe(Se)

Se ¥
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The distribution of the total input is now written

P(him = SIEL =0, Bl

Il
—
=

Si
= exp[—fN <<I>f” <—g>
SI‘SQ/;—SE:S IN
de(Se v
+ @ (fN, CG)) +o(fN)}
=exp [—fN <<1>f” (s7, ) + @ (sj, ZG)) + o(fN)] (60)

S S S
* 1 * e k —
where s/ = 7N and s; = TN =55 (where s = —fN)

are given by the condition '

3 (®/e(s1, ) + ®U(s — 51, Yy FG))
as;

(s{)=0 (61)

Solving this equation yields

1 1-9%G
_(14_34_&)
2 g
2
1 1-9%G
—= (1+s+i> —4s
2 g

1 1-9%tG
SZ:—E<1_S+&)
8

2
1 1-9)%LG 1-g)LG
+— 1_s+& +4&S
2 g 8

=
*
I

(62)

Background neurons in silent modules There is only
long-range inputs in this case and the fraction of activated
long-range synapses G’ >~ acF is given by (28),

P(him = SIELS, =0, 840 = 0)

FMfN\ (D )\ D \FMIN=S
- (") (o) (1-59)
S N N

Nl (S Y
exp[ fND <fN,CG>+0(fN):| (63)

Probability of no errors We have derived the expressions
for the distribution of inputs to both foreground and back-
ground neurons. In order to compute the probability that
there is no error {},, in the retrieval of pattern £#°, we have
to estimate the probability that the inputs are above or below
threshold, as written in the main text in (14). To do so we
first note that

Plhim = 0f NIET,) = Plhim = 6FNIES)
Z P(hi = stlEm)
P(him = 0f N|EL)

s>0

(64)

where the ‘)’ term will not contribute to the final expres-
sion of P, in the large N limit, as has been shown in
(Dubreuil et al. 2014). In practice we thus replace the prob-
ability to be above threshold by the probability to be at
threshold. We can apply the same reasoning for the prob-
ability to be above the activation threshold for background
neurons. We now have all the elements to express @/, ob
and ®% in formulas (14):

f_gdc(g_1 Y
o = @ (9 1,C) (65)
O = o/ (57(0). g) + 9% (52(0), LG) (66)
C
and
Yo adc Y
o = @ (G,CG)
= 0log(1/F) (67)

Case FM = O(1)

In this case the microscopic dilution term % is finite and
we have to use ®/¢ instead of ®? to describe the exter-
nal inputs. Following the same reasoning as above, the rate
functions are

6—1
o =®B-1)h =
FM2

1—©—-1)/FM
and
¢ (o * 5¢ )
P = d/(s7(0), g) +s5(O)In (W)
+ (FM —s:(0))In (M) (69)
- 5G
with s/ and s given by
. MFM —s)4+1+s
T 21— 1)
1 ,\(FM—s)+1+s>2 48
2 ( 1— A 1=
« _ —AMEFM+s)+s—1
Se = 21— 1)
L (—A(FM+s)+s—1)2+4xFMs
2 1=x) 1—2
(70
with
N 4 G(l—g) 1)

CcFM (1-G-F£pg
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The expression for ®" remains unchanged as connec-
tivity between two randomly taken modules is effectively
highly diluted.

Capacity calculation for a single module with diluted
connectivity

Here we focus on a model made of a single module with
N neurons whose dynamics obey Eq. (1), where we store
P patterns " with coding level f (3, &/ = fN). As for
modular networks we focus on the limits N — 400, f =
,BI“TN and P = % with o, 8 = O(1). Patterns are stored
on a diluted connéctivity matrix, such that at the end of the
learning phase the synaptic matrix is given by W;; = wj;d;;.
With w;; = 1 if there exists a pattern such that neurons i
and j are co-activated, w;; = 0 otherwise ; and d;; is drawn
randomly in {0, 1} being 1 with probability d < 1.

To compute the capacity we follow the procedure
described in the ‘Methods’ section. We first set the network
in a state corresponding to one of the patterns £"°, and ask
whether this a fixed point of Eq. (1). This is done by com-
puting IP,,., the probability that all the fields are on the right
side of the activation threshold. Similarly to Eq. (13),

Pre = (1—P(h; < fNO|&° = D))"
(1—Ph; = fNO |/ = 0) DY (72)

Using the Eqgs. (52), (54) that describe the distributions of
inputs and the fact that P(h; < fNO £/ = 1) >~ P(h; =
fNO| él.” 9 =1) (see (Dubreuil et al. 2014)) we can write

P(h; < fNO & = 1) = exp(— fNPY(0,d) + o(fN))  (73)
and
P(h; > fNO £/ = 1) = exp(— fN®“(8.dg) + o(fN)) (74

where ¢ is the fraction of synapses on i, w;;, that are 1 after
the learning phase, which can be expressed as
g =1—exp(—a) (75)

For P, to go 1 in the large N limit, Equations (17), (18)
have to be satisfied. Saturating these inequalities leads to a
choice of activation threshold &6 — d and a coding level
with

B

1
Cd(=Ing+1—gq)
In the specific case we are studying the general expres-
sion for the storage capacity (20) can be written

(76)

1 «

I= 5 (77
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Table 1 Notations

M number of modules

N number of neurons
in each module

F fraction of active

modules in a memory

f fraction of active neurons
in an active module
B B=fmy =00
P number of stored memories
P number of categories
p number of memories in each category
c number of categories in which
a module is activated
o storage load @ = pf2 = 0(1)
ratio between the numbers of synaptic
contacts from long and short-range origins
0 activation threshold
g fraction of local pairs of neurons
co-activated at least once during learning
G fraction of non-local pairs of neurons
co-activated at least once during learning
E amount of error to correct
n amount of local inhibition

Using the two Egs. (75)—(76), it can be expressed more
simply

I In(1 —g)(ng +1—¢q)
N In2

(78)

A maximal storage capacity / = 0.26 is reached at ¢ =
0.24.

Note that for modular networks we can not get such a
closed form for I since the P(h; = fN6) needs to be
estimated numerically.
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